Cargando…

Antitumor effects of regorafenib and sorafenib in preclinical models of hepatocellular carcinoma

The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (rego...

Descripción completa

Detalles Bibliográficos
Autores principales: Kissel, Maria, Berndt, Sandra, Fiebig, Lukas, Kling, Simon, Ji, Qunsheng, Gu, Qingyang, Lang, Tina, Hafner, Frank-Thorsten, Teufel, Michael, Zopf, Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739799/
https://www.ncbi.nlm.nih.gov/pubmed/29291014
http://dx.doi.org/10.18632/oncotarget.22334
Descripción
Sumario:The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (regorafenib) or 30 mg/kg (sorafenib), which recapitulate the human exposure at the maximally tolerated dose in mice. In a H129 hepatoma model, survival times differed significantly between regorafenib versus vehicle (p=0.0269; median survival times 36 vs 27 days), but not between sorafenib versus vehicle (p=0.1961; 33 vs 28 days). Effects on tumor growth were assessed in 10 patient-derived HCC xenograft (HCC-PDX) models. Significant tumor growth inhibition was observed in 8/10 models with regorafenib and 7/10 with sorafenib; in four models, superior response was observed with regorafenib versus sorafenib which was deemed not to be due to lower sorafenib exposure. Bead-based multiplex western blot analysis was performed with total protein lysates from drug- and vehicle-treated HCC-PDX xenografts. Protein expression was substantially different in regorafenib- and sorafenib-treated samples compared with vehicle. The pattern of upregulated proteins was similar with both drugs and indicates an activated RAF/MEK/ERK pathway, but more proteins were downregulated with sorafenib versus regorafenib. Overall, both regorafenib and sorafenib were effective in mouse models of HCC, although several cases showed better regorafenib activity which may explain the observed efficacy of regorafenib in sorafenib-refractory patients.