Cargando…

Circulating GRP78 antibodies from ovarian cancer patients: a promising tool for cancer cell targeting drug delivery system?

Glucose-regulated protein 78 (GRP78) is a chaperone protein that has a high frequency in tumor cells. Normally it is found in the endoplasmic reticulum to assist in protein folding, but under cellular stress, GRP78 influences proliferative signaling pathways at the cell surface. The increased expres...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Hoesen, Kylie, Meynier, Sonia, Ribaux, Pascale, Petignat, Patrick, Delie, Florence, Cohen, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739806/
https://www.ncbi.nlm.nih.gov/pubmed/29291021
http://dx.doi.org/10.18632/oncotarget.22412
Descripción
Sumario:Glucose-regulated protein 78 (GRP78) is a chaperone protein that has a high frequency in tumor cells. Normally it is found in the endoplasmic reticulum to assist in protein folding, but under cellular stress, GRP78 influences proliferative signaling pathways at the cell surface. The increased expression elicits autoantibody production, providing a biomarker of ovarian cancer, as well as other types of cancer. This study aims to determine the epitope recognition of GRP78 autoantibodies isolated from serum of ovarian cancer patients and use the identified antibodies to design new drug delivery systems to specifically target cancer cells. We first confirmed that the membrane GRP78 levels are increased in ovarian cancer cells and positively correlate with proliferation. However, the level of circulating GRP78 autoantibodies did not correlate with membrane GRP78 expression in ovarian cancer cells and was lower, although not significantly, compared to control patients. We then determined the epitope recognition of GRP78 autoantibodies and showed that treatment with paclitaxel-loaded nanoparticles coated with anti-GRP78 antibodies significantly decreased tumor development in chick embryo culture of ovarian cancer cell tumors compared to paclitaxel treatment alone. This evidence suggests that nanoparticle drug delivery systems coupled with antibodies against GRP78 has potential as a powerful therapy against ovarian cancer.