Cargando…
Force fields of charged particles in micro-nanofluidic preconcentration systems
Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739909/ https://www.ncbi.nlm.nih.gov/pubmed/29308297 http://dx.doi.org/10.1063/1.5008365 |
_version_ | 1783287961462243328 |
---|---|
author | Gong, Lingyan Ouyang, Wei Li, Zirui Han, Jongyoon |
author_facet | Gong, Lingyan Ouyang, Wei Li, Zirui Han, Jongyoon |
author_sort | Gong, Lingyan |
collection | PubMed |
description | Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems. |
format | Online Article Text |
id | pubmed-5739909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | AIP Publishing LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-57399092018-01-07 Force fields of charged particles in micro-nanofluidic preconcentration systems Gong, Lingyan Ouyang, Wei Li, Zirui Han, Jongyoon AIP Adv Regular Articles Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems. AIP Publishing LLC 2017-12-21 /pmc/articles/PMC5739909/ /pubmed/29308297 http://dx.doi.org/10.1063/1.5008365 Text en © 2017 Author(s). 2158-3226/2017/7(12)/125020/9/$0.00 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Articles Gong, Lingyan Ouyang, Wei Li, Zirui Han, Jongyoon Force fields of charged particles in micro-nanofluidic preconcentration systems |
title | Force fields of charged particles in micro-nanofluidic preconcentration systems |
title_full | Force fields of charged particles in micro-nanofluidic preconcentration systems |
title_fullStr | Force fields of charged particles in micro-nanofluidic preconcentration systems |
title_full_unstemmed | Force fields of charged particles in micro-nanofluidic preconcentration systems |
title_short | Force fields of charged particles in micro-nanofluidic preconcentration systems |
title_sort | force fields of charged particles in micro-nanofluidic preconcentration systems |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739909/ https://www.ncbi.nlm.nih.gov/pubmed/29308297 http://dx.doi.org/10.1063/1.5008365 |
work_keys_str_mv | AT gonglingyan forcefieldsofchargedparticlesinmicronanofluidicpreconcentrationsystems AT ouyangwei forcefieldsofchargedparticlesinmicronanofluidicpreconcentrationsystems AT lizirui forcefieldsofchargedparticlesinmicronanofluidicpreconcentrationsystems AT hanjongyoon forcefieldsofchargedparticlesinmicronanofluidicpreconcentrationsystems |