Cargando…

Phased uplift of the northeastern Tibetan Plateau inferred from a pollen record from Yinchuan Basin, northwestern China

The uplift of the Tibetan Plateau (TP) significantly affected both regional and global climates. Although there is evidence that the Tibetan Plateau experienced uplift during the Quaternary, the timing and amplitude are poorly constrained. However, the increased availability of long sedimentary reco...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xinling, Hao, Qingzhen, Wei, Mingjian, Andreev, Andrei A., Wang, Junping, Tian, Yanyan, Li, Xiaolei, Cai, Maotang, Hu, Jianmin, Shi, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740150/
https://www.ncbi.nlm.nih.gov/pubmed/29269783
http://dx.doi.org/10.1038/s41598-017-16915-z
Descripción
Sumario:The uplift of the Tibetan Plateau (TP) significantly affected both regional and global climates. Although there is evidence that the Tibetan Plateau experienced uplift during the Quaternary, the timing and amplitude are poorly constrained. However, the increased availability of long sedimentary records of vegetation change provides an opportunity to reconstruct the timing of the uplift. Here, we present a well-dated, high-resolution pollen record for the last 2.6 Ma from the Yinchuan Basin, which was incised by the Yellow River with its source in the northeastern Tibetan Plateau. Variations in the Artemisia/Chenopodiaceae (A/C) ratio of the reveal changes in moisture conditions in the Yinchuan Basin during glacial-interglacial cycles, as well as a gradual long-term aridification trend which is consistent with progressive global cooling. However, fluctuations in the percentages of Picea and Abies differ from those of the A/C ratio and we propose that they reflect changes in the vegetation and environment of high elevation areas. The Picea and Abies records reveal two phases of increased representation, at 2.1 and 1.2 Ma, which may indicate phases in the uplift of the northeastern Tibetan Plateau. Thus, they provide independent evidence for the timing of the uplift of the Tibetan Plateau during the Quaternary.