Cargando…
Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains
Proximity-ligation methods such as Hi-C allow us to map physical DNA–DNA interactions along the genome, and reveal its organization into topologically associating domains (TADs). As the Hi-C data accumulate, computational methods were developed for identifying domain borders in multiple cell types a...
Autores principales: | Ron, Gil, Globerson, Yuval, Moran, Dror, Kaplan, Tommy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740158/ https://www.ncbi.nlm.nih.gov/pubmed/29269730 http://dx.doi.org/10.1038/s41467-017-02386-3 |
Ejemplares similares
-
HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions
por: Wang, Xiao-Tao, et al.
Publicado: (2017) -
HiCImpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data
por: Xie, Qing, et al.
Publicado: (2022) -
GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data
por: Mifsud, Borbala, et al.
Publicado: (2017) -
Analysis of the structural variability of topologically associated domains as revealed by Hi-C
por: Sauerwald, Natalie, et al.
Publicado: (2019) -
Correction: GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data
Publicado: (2017)