Cargando…

Interferon-α inhibits cell migration and invasion and induces the expression of antiviral proteins in Huh-7 cells transfected with hepatitis B virus X gene-expressing lentivirus

Hepatitis B virus (HBV) X protein (HBx) serves an important role in HBV infection and the development of HBV-related liver cancer. Interferon-α (IFN-α) is used to treat patients with HBV; however, the role of IFN-α in the development of HBV-related liver cancer remains unclear. The present study est...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qian, Li, Xiao-Peng, Zhong, Yuan-Bin, Xiang, Tian-Xin, Zhang, Lun-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740601/
https://www.ncbi.nlm.nih.gov/pubmed/29285141
http://dx.doi.org/10.3892/etm.2017.5288
Descripción
Sumario:Hepatitis B virus (HBV) X protein (HBx) serves an important role in HBV infection and the development of HBV-related liver cancer. Interferon-α (IFN-α) is used to treat patients with HBV; however, the role of IFN-α in the development of HBV-related liver cancer remains unclear. The present study established a new HBV-related liver cancer model (Huh-7-HBx) by transfecting the hepatoma cell line Huh-7, with HBx-expressing lentivirus. Following IFN-α treatment, cell viability, migration and invasion, as well as the expression of antiviral proteins in Huh-7-HBx, were subsequently determined. The results demonstrated that HBx-expressing lentivirus had no significant effect on cell viability but promoted the migration and invasion of Huh-7 cells. The expression of the antiviral genes IFN α and β receptor subunit 1 (IFNAR1), IFNAR2, IFN-stimulated gene factor 3, double-stranded RNA-activated protein kinase and ribonuclease L, was also increased. Following treatment of Huh-7-HBx cells with IFN-α, the expression of antiviral genes was increased at the level of transcription and translation, whereas cell migration and invasion was decreased. The present study suggests that IFN-α may attenuate the development of HBV-related liver cancer by reducing cell migration and invasion and promoting the expression of antiviral proteins.