Cargando…
Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway
HSP70 overexpression has a remedying effect in neurodegenerative diseases. In Alzheimer's disease (AD), the suppressive effects of HSP70 overexpression on AD-related phenotypes and the underlying mechanisms are unknown. In the current study, the effect of geranylgeranylacetone (GGA), a non-toxi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740803/ https://www.ncbi.nlm.nih.gov/pubmed/29285052 http://dx.doi.org/10.3892/etm.2017.5253 |
_version_ | 1783288090620592128 |
---|---|
author | Sun, Yuan Zhang, Jiang-Rong Chen, Shuyan |
author_facet | Sun, Yuan Zhang, Jiang-Rong Chen, Shuyan |
author_sort | Sun, Yuan |
collection | PubMed |
description | HSP70 overexpression has a remedying effect in neurodegenerative diseases. In Alzheimer's disease (AD), the suppressive effects of HSP70 overexpression on AD-related phenotypes and the underlying mechanisms are unknown. In the current study, the effect of geranylgeranylacetone (GGA), a non-toxic inducer of heat shock protein (HSP)-70 expression, on cognitive function and other pathological phenotypes were evaluated in APP/PS1 mice. It was observed that all doses of orally administered GGA (200, 400, and 800 mg/kg/day) improved cognitive deficit (P<0.05) and lowered the levels of amyloid-β (Aβ) peptide (P<0.05) in APP/PS1 mice. GGA treatment also increased the levels of low density lipoprotein receptor-related protein 1 (LRP-1) (P<0.05), while the levels of p-glycoprotein and receptor for advanced glycation end products were unaltered. Significant decreases in the levels of inflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β and cyclooxygenase-2, were also observed in the GGA-treated mice (P<0.05). Subsequent treatment with the HSP70 inhibitor quercetin caused significant decreases in the levels of phosphorylated (p)-p38 mitogen-activated protein kinase (p38 MAPK) and p-extracellular signal-regulated protein kinases (ERK; P<0.05), indicating that ERK/p38 MAPK signaling in AD-related phenotypes may be suppressed by oral administration of GGA. Finally, in APP/PS1 mice treated with GGA+SB-203580 (p38 inhibitor) and GGA+PD98059 (ERK inhibitor), it was observed that orally administered GGA led to the activation of ERK/p38 MAPK signaling (P<0.05) and increased LRP-1 expression (P<0.05), which subsequently aided the clearance of Aβ40 and Aβ42 (P<0.05) and alleviated AD-related phenotypes. These results indicate that oral administration of GGA in APP/PS1 mice alleviates AD-related phenotypes by regulation of the ERK/p38 MAPK signaling pathway. Thus, GGA may be a potential therapeutic for the treatment of AD. |
format | Online Article Text |
id | pubmed-5740803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-57408032017-12-28 Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway Sun, Yuan Zhang, Jiang-Rong Chen, Shuyan Exp Ther Med Articles HSP70 overexpression has a remedying effect in neurodegenerative diseases. In Alzheimer's disease (AD), the suppressive effects of HSP70 overexpression on AD-related phenotypes and the underlying mechanisms are unknown. In the current study, the effect of geranylgeranylacetone (GGA), a non-toxic inducer of heat shock protein (HSP)-70 expression, on cognitive function and other pathological phenotypes were evaluated in APP/PS1 mice. It was observed that all doses of orally administered GGA (200, 400, and 800 mg/kg/day) improved cognitive deficit (P<0.05) and lowered the levels of amyloid-β (Aβ) peptide (P<0.05) in APP/PS1 mice. GGA treatment also increased the levels of low density lipoprotein receptor-related protein 1 (LRP-1) (P<0.05), while the levels of p-glycoprotein and receptor for advanced glycation end products were unaltered. Significant decreases in the levels of inflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β and cyclooxygenase-2, were also observed in the GGA-treated mice (P<0.05). Subsequent treatment with the HSP70 inhibitor quercetin caused significant decreases in the levels of phosphorylated (p)-p38 mitogen-activated protein kinase (p38 MAPK) and p-extracellular signal-regulated protein kinases (ERK; P<0.05), indicating that ERK/p38 MAPK signaling in AD-related phenotypes may be suppressed by oral administration of GGA. Finally, in APP/PS1 mice treated with GGA+SB-203580 (p38 inhibitor) and GGA+PD98059 (ERK inhibitor), it was observed that orally administered GGA led to the activation of ERK/p38 MAPK signaling (P<0.05) and increased LRP-1 expression (P<0.05), which subsequently aided the clearance of Aβ40 and Aβ42 (P<0.05) and alleviated AD-related phenotypes. These results indicate that oral administration of GGA in APP/PS1 mice alleviates AD-related phenotypes by regulation of the ERK/p38 MAPK signaling pathway. Thus, GGA may be a potential therapeutic for the treatment of AD. D.A. Spandidos 2017-12 2017-10-03 /pmc/articles/PMC5740803/ /pubmed/29285052 http://dx.doi.org/10.3892/etm.2017.5253 Text en Copyright: © Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Sun, Yuan Zhang, Jiang-Rong Chen, Shuyan Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title | Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title_full | Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title_fullStr | Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title_full_unstemmed | Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title_short | Suppression of Alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway |
title_sort | suppression of alzheimer's disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in app/ps1 transgenic mice via the erk/p38 mapk signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740803/ https://www.ncbi.nlm.nih.gov/pubmed/29285052 http://dx.doi.org/10.3892/etm.2017.5253 |
work_keys_str_mv | AT sunyuan suppressionofalzheimersdiseaserelatedphenotypesbytheheatshockprotein70inducergeranylgeranylacetoneinappps1transgenicmiceviatheerkp38mapksignalingpathway AT zhangjiangrong suppressionofalzheimersdiseaserelatedphenotypesbytheheatshockprotein70inducergeranylgeranylacetoneinappps1transgenicmiceviatheerkp38mapksignalingpathway AT chenshuyan suppressionofalzheimersdiseaserelatedphenotypesbytheheatshockprotein70inducergeranylgeranylacetoneinappps1transgenicmiceviatheerkp38mapksignalingpathway |