Cargando…
Triweekly administration of parathyroid hormone (1–34) accelerates bone healing in a rat refractory fracture model
BACKGROUND: Some reports have shown that intermittent parathyroid hormone (PTH) (1–34) treatment for patients with delayed union or nonunion have led to successful healing. In this study, we investigated whether systemic intermittent administration of PTH (1–34) has a beneficial effect on bone heali...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740882/ https://www.ncbi.nlm.nih.gov/pubmed/29268728 http://dx.doi.org/10.1186/s12891-017-1917-2 |
Sumario: | BACKGROUND: Some reports have shown that intermittent parathyroid hormone (PTH) (1–34) treatment for patients with delayed union or nonunion have led to successful healing. In this study, we investigated whether systemic intermittent administration of PTH (1–34) has a beneficial effect on bone healing in a rat refractory fracture model. METHODS: We created a refractory femoral fracture model in 32 rats with periosteal cauterization that leads to atrophic nonunion at 8 weeks after surgery. Half the rats received subcutaneous intermittent human PTH (1–34) injections at a dosage of 100 μg/kg, thrice a week for 8 weeks. The other half received the vehicle only. At 8 weeks after fracture, radiographic, histological and mechanical assessments were performed. RESULTS: Radiographic assessments showed that the union rate was significantly higher in the PTH group than in the control group (P < 0.05). The degree of fracture repair as scored using the Allen grading system in histological assessment was significantly greater in the PTH group than in the control group (P < 0.05). The ultimate stress and stiffness measurements were significantly greater in the PTH group than in the control group (p < 0.05). CONCLUSIONS: We demonstrated that triweekly administration of PTH (1–34) increased union rate and accelerated bone healing in a rat refractory fracture model, suggesting that systemic administration of PTH (1–34) could become a novel and useful therapy for accelerating fracture healing in patients at high risk of delayed union or nonunion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12891-017-1917-2) contains supplementary material, which is available to authorized users. |
---|