Cargando…

GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cameron, Daniel L., Schröder, Jan, Penington, Jocelyn Sietsma, Do, Hongdo, Molania, Ramyar, Dobrovic, Alexander, Speed, Terence P., Papenfuss, Anthony T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741059/
https://www.ncbi.nlm.nih.gov/pubmed/29097403
http://dx.doi.org/10.1101/gr.222109.117
_version_ 1783288137519202304
author Cameron, Daniel L.
Schröder, Jan
Penington, Jocelyn Sietsma
Do, Hongdo
Molania, Ramyar
Dobrovic, Alexander
Speed, Terence P.
Papenfuss, Anthony T.
author_facet Cameron, Daniel L.
Schröder, Jan
Penington, Jocelyn Sietsma
Do, Hongdo
Molania, Ramyar
Dobrovic, Alexander
Speed, Terence P.
Papenfuss, Anthony T.
author_sort Cameron, Daniel L.
collection PubMed
description The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.
format Online
Article
Text
id pubmed-5741059
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-57410592018-01-23 GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly Cameron, Daniel L. Schröder, Jan Penington, Jocelyn Sietsma Do, Hongdo Molania, Ramyar Dobrovic, Alexander Speed, Terence P. Papenfuss, Anthony T. Genome Res Method The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. Cold Spring Harbor Laboratory Press 2017-12 /pmc/articles/PMC5741059/ /pubmed/29097403 http://dx.doi.org/10.1101/gr.222109.117 Text en © 2017 Cameron et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
spellingShingle Method
Cameron, Daniel L.
Schröder, Jan
Penington, Jocelyn Sietsma
Do, Hongdo
Molania, Ramyar
Dobrovic, Alexander
Speed, Terence P.
Papenfuss, Anthony T.
GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title_full GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title_fullStr GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title_full_unstemmed GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title_short GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
title_sort gridss: sensitive and specific genomic rearrangement detection using positional de bruijn graph assembly
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741059/
https://www.ncbi.nlm.nih.gov/pubmed/29097403
http://dx.doi.org/10.1101/gr.222109.117
work_keys_str_mv AT camerondaniell gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT schroderjan gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT peningtonjocelynsietsma gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT dohongdo gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT molaniaramyar gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT dobrovicalexander gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT speedterencep gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly
AT papenfussanthonyt gridsssensitiveandspecificgenomicrearrangementdetectionusingpositionaldebruijngraphassembly