Cargando…

Blocking interleukin-6 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity of human medulloblastoma cells

Elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6) have tumor-promoting activity and are associated with poor survival outcomes in many cancers. Additionally, the IL-6/GP130/STAT3 axis has been widely studied due to its pivotal role in tumor development and maintenance in a number...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiang, Wei, Jia, Li, Chenglong, Pierson, Christopher R., Finlay, Jonathan L., Lin, Jiayuh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741369/
https://www.ncbi.nlm.nih.gov/pubmed/29207075
http://dx.doi.org/10.3892/ijo.2017.4211
Descripción
Sumario:Elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6) have tumor-promoting activity and are associated with poor survival outcomes in many cancers. Additionally, the IL-6/GP130/STAT3 axis has been widely studied due to its pivotal role in tumor development and maintenance in a number of tissue types, including the cerebellum. However, the connection between IL-6 signaling and medulloblastoma progression is largely unexplored. In the present study, we observed that IL-6 induced medulloblastoma cell viability, cell proliferation and glycolysis. Furthermore, it also upregulated the expression of phosphorylated STAT3, indicating that the IL-6/GP130/STAT3 pathway plays a central role in medulloblastoma. The FDA-approved drug bazedoxifene, a blocker of the formation of the hexameric IL-6/IL-6R/GP130 complex, was re-purposed in this study to inhibit the IL-6/GP130/STAT3 signaling pathway. Bazedoxifene not only inhibited IL-6 mediated cell viability and cell proliferation, and increased phosphorylated STAT3 expression, but it also decreased cell glycolysis, demonstrating a certain level of therapeutic efficacy in vitro. Collectively, our findings offer new insight into the molecular mechanism underlying the biological aggressiveness of medulloblastoma, the roles of IL-6 in these processes and a possible efficacious adjuvant therapy for medulloblastoma.