Cargando…

Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis

Polycystic ovary syndrome (PCOS) affects 5–15% of women. PCOS is a heterogeneous disorder displaying endocrine, metabolic, and reproductive dysfunction and cardiovascular risk manifestations. Evidence of heritability exists, but only a portion of the genetic transmission has been identified by genom...

Descripción completa

Detalles Bibliográficos
Autores principales: Lambertini, Luca, Saul, Shira Rebecca, Copperman, Alan B., Hammerstad, Sara Salehi, Yi, Zhengzi, Zhang, Weijia, Tomer, Yaron, Kase, Nathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741701/
https://www.ncbi.nlm.nih.gov/pubmed/29326659
http://dx.doi.org/10.3389/fendo.2017.00352
_version_ 1783288230987169792
author Lambertini, Luca
Saul, Shira Rebecca
Copperman, Alan B.
Hammerstad, Sara Salehi
Yi, Zhengzi
Zhang, Weijia
Tomer, Yaron
Kase, Nathan
author_facet Lambertini, Luca
Saul, Shira Rebecca
Copperman, Alan B.
Hammerstad, Sara Salehi
Yi, Zhengzi
Zhang, Weijia
Tomer, Yaron
Kase, Nathan
author_sort Lambertini, Luca
collection PubMed
description Polycystic ovary syndrome (PCOS) affects 5–15% of women. PCOS is a heterogeneous disorder displaying endocrine, metabolic, and reproductive dysfunction and cardiovascular risk manifestations. Evidence of heritability exists, but only a portion of the genetic transmission has been identified by genome-wide association studies and linkage studies, suggesting epigenetic phenomena may play a role. Evidence implicates intrauterine influences in the genesis of PCOS. This was a pilot study that aimed at identifying an epigenetic PCOS reprogramming signature by profiling the methylation of the DNA extracted from umbilical cord blood (UCB) from 12 subjects undergoing in vitro fertilization. Six subjects were anovulatory PCOS women diagnosed by Rotterdam criteria and six ovulatory non-PCOS women matched for age and body mass index. UCB was collected at delivery of the placenta; the DNA was extracted and submitted to methylation analysis. A differential methylation picture of prevalent hypomethylation affecting 918 genes was detected. Of these, 595 genes (64.8%) carried single or multiple hypomethylated CpG dinucleotides and 323 genes (35.2%) single or multiple hypermethylated CpG dinucleotides. The Ingenuity Pathway Analysis (IPA) online platform enlisted 908 of the 918 input genes and clustered 794 of them into 21 gene networks. Key features of the primary networks scored by IPA included carbohydrate and lipid metabolism, neurotransmitter signaling, cardiovascular system development and function, glycosaminoglycan signaling regulation and control of amino acid biosynthesis. Central to the network activities were genes controlling hormonal regulation (ESR1), mitochondrial activity (APP, PARK2), and glucose metabolism (INS). Regulatory pathways such as G-protein coupled receptor signaling, inositol metabolism, and inflammatory response were also highlighted. These data suggested the existence of a putative “PCOS epigenomic superpathway” with three main components: glucotoxic, lipotoxic, and inflammatory. If our results are confirmed, they hint at an epigenetic at risk PCOS “signature” may thus exist that may be identifiable at birth. Additional studies are needed to confirm the results of this pilot study.
format Online
Article
Text
id pubmed-5741701
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-57417012018-01-11 Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis Lambertini, Luca Saul, Shira Rebecca Copperman, Alan B. Hammerstad, Sara Salehi Yi, Zhengzi Zhang, Weijia Tomer, Yaron Kase, Nathan Front Endocrinol (Lausanne) Endocrinology Polycystic ovary syndrome (PCOS) affects 5–15% of women. PCOS is a heterogeneous disorder displaying endocrine, metabolic, and reproductive dysfunction and cardiovascular risk manifestations. Evidence of heritability exists, but only a portion of the genetic transmission has been identified by genome-wide association studies and linkage studies, suggesting epigenetic phenomena may play a role. Evidence implicates intrauterine influences in the genesis of PCOS. This was a pilot study that aimed at identifying an epigenetic PCOS reprogramming signature by profiling the methylation of the DNA extracted from umbilical cord blood (UCB) from 12 subjects undergoing in vitro fertilization. Six subjects were anovulatory PCOS women diagnosed by Rotterdam criteria and six ovulatory non-PCOS women matched for age and body mass index. UCB was collected at delivery of the placenta; the DNA was extracted and submitted to methylation analysis. A differential methylation picture of prevalent hypomethylation affecting 918 genes was detected. Of these, 595 genes (64.8%) carried single or multiple hypomethylated CpG dinucleotides and 323 genes (35.2%) single or multiple hypermethylated CpG dinucleotides. The Ingenuity Pathway Analysis (IPA) online platform enlisted 908 of the 918 input genes and clustered 794 of them into 21 gene networks. Key features of the primary networks scored by IPA included carbohydrate and lipid metabolism, neurotransmitter signaling, cardiovascular system development and function, glycosaminoglycan signaling regulation and control of amino acid biosynthesis. Central to the network activities were genes controlling hormonal regulation (ESR1), mitochondrial activity (APP, PARK2), and glucose metabolism (INS). Regulatory pathways such as G-protein coupled receptor signaling, inositol metabolism, and inflammatory response were also highlighted. These data suggested the existence of a putative “PCOS epigenomic superpathway” with three main components: glucotoxic, lipotoxic, and inflammatory. If our results are confirmed, they hint at an epigenetic at risk PCOS “signature” may thus exist that may be identifiable at birth. Additional studies are needed to confirm the results of this pilot study. Frontiers Media S.A. 2017-12-18 /pmc/articles/PMC5741701/ /pubmed/29326659 http://dx.doi.org/10.3389/fendo.2017.00352 Text en Copyright © 2017 Lambertini, Saul, Copperman, Hammerstad, Yi, Zhang, Tomer and Kase. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Lambertini, Luca
Saul, Shira Rebecca
Copperman, Alan B.
Hammerstad, Sara Salehi
Yi, Zhengzi
Zhang, Weijia
Tomer, Yaron
Kase, Nathan
Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title_full Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title_fullStr Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title_full_unstemmed Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title_short Intrauterine Reprogramming of the Polycystic Ovary Syndrome: Evidence from a Pilot Study of Cord Blood Global Methylation Analysis
title_sort intrauterine reprogramming of the polycystic ovary syndrome: evidence from a pilot study of cord blood global methylation analysis
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741701/
https://www.ncbi.nlm.nih.gov/pubmed/29326659
http://dx.doi.org/10.3389/fendo.2017.00352
work_keys_str_mv AT lambertiniluca intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT saulshirarebecca intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT coppermanalanb intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT hammerstadsarasalehi intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT yizhengzi intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT zhangweijia intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT tomeryaron intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis
AT kasenathan intrauterinereprogrammingofthepolycysticovarysyndromeevidencefromapilotstudyofcordbloodglobalmethylationanalysis