Cargando…
Pitavastatin nanoparticle-engineered endothelial progenitor cells repair injured vessels
Endothelial progenitor cells (EPC) participate in vessel recovery and maintenance of normal endothelial function. Therefore, pitavastatin-nanoparticles (NPs)-engineered EPC may be effective in repairing injured vasculature. Pitavastatin-loaded poly(lactic-co-glycolic) acid (PLGA) NPs were obtained v...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741712/ https://www.ncbi.nlm.nih.gov/pubmed/29273744 http://dx.doi.org/10.1038/s41598-017-18286-x |
Sumario: | Endothelial progenitor cells (EPC) participate in vessel recovery and maintenance of normal endothelial function. Therefore, pitavastatin-nanoparticles (NPs)-engineered EPC may be effective in repairing injured vasculature. Pitavastatin-loaded poly(lactic-co-glycolic) acid (PLGA) NPs were obtained via ultrasonic emulsion solvent evaporation with PLGA as the carrier encapsulating pitavastatin. The effects and mechanism of pitavastatin-NPs on EPC proliferation in vitro were evaluated. Then, EPC that internalized pitavastatin-NPs were transplanted into rats after carotid artery injury. EPC homing, re-endothelialization, and neointima were evaluated by fluorescence labeling, evans Blue and hematoxylin/eosin (H&E) staining. Pitavastatin-NPs significantly improved EPC proliferation compared with control and pitavastatin group. Those effects were blocked by pretreatment with the pharmacological phosphoinositide 3-kinase (PI3K) blockers LY294002. After carotid artery injury, more transplanted EPC were detected in target zone in Pitavastatin-NPs group than pitavastatin and control group. Re-endothelialization was promoted and intimal hyperplasia was inhibited as well. Thus, pitavastatin-NPs promote EPC proliferation via PI3K signaling and accelerate recovery of injured carotid artery. |
---|