Cargando…

Developing and diagnosing climate change indicators of regional aerosol optical properties

Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sullivan, Ryan C., Levy, Robert C., da Silva, Arlindo M., Pryor, Sara C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741728/
https://www.ncbi.nlm.nih.gov/pubmed/29273800
http://dx.doi.org/10.1038/s41598-017-18402-x
Descripción
Sumario:Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (Ångström exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over well-defined regions of North America, there are generally negative temporal trends in mean and extreme AOD, and SSA. These are consistent with lower aerosol burdens and transition towards a relatively absorbing aerosol, driven primarily by declining sulfur dioxide emissions. Conversely, more remote regions are characterized by increasing mean and extreme AOD that is attributed to increased local wildfire emissions and long-range (transcontinental) transport. Regional and national reductions in anthropogenic emissions of aerosol precursors are leading to declining spatial autocorrelation in the aerosol fields and increased importance of local anthropogenic emissions in dictating aerosol burdens. However, synoptic types associated with high aerosol burdens are intensifying (becoming more warm and humid), and thus changes in synoptic meteorology may be offsetting aerosol burden reductions associated with emissions legislation.