Cargando…
ksrMKL: a novel method for identification of kinase–substrate relationships using multiple kernel learning
Phosphorylation exerts a crucial role in multiple biological cellular processes which is catalyzed by protein kinases and closely related to many diseases. Identification of kinase–substrate relationships is important for understanding phosphorylation and provides a fundamental basis for further dis...
Autores principales: | Wang, Minghui, Wang, Tao, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741978/ https://www.ncbi.nlm.nih.gov/pubmed/29340231 http://dx.doi.org/10.7717/peerj.4182 |
Ejemplares similares
-
MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks
por: Wani, Nisar, et al.
Publicado: (2021) -
Prediction of post-translational modification sites using multiple kernel support vector machine
por: Wang, BingHua, et al.
Publicado: (2017) -
PhosVarDeep: deep-learning based prediction of phospho-variants using sequence information
por: Liu, Xia, et al.
Publicado: (2022) -
Fourier Ring Correlation and Anisotropic Kernel Density Estimation Improve Deep Learning Based SMLM Reconstruction of Microtubules
por: Berberich, Andreas, et al.
Publicado: (2021) -
KSFinder—a knowledge graph model for link prediction of novel phosphorylated substrates of kinases
por: Anandakrishnan, Manju, et al.
Publicado: (2023)