Cargando…
Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons
Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dor...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742109/ https://www.ncbi.nlm.nih.gov/pubmed/29311831 http://dx.doi.org/10.3389/fncel.2017.00400 |
_version_ | 1783288308618493952 |
---|---|
author | Wei, Dongyu Mei, Yixiao Xia, Jingsheng Hu, Huijuan |
author_facet | Wei, Dongyu Mei, Yixiao Xia, Jingsheng Hu, Huijuan |
author_sort | Wei, Dongyu |
collection | PubMed |
description | Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dorsal root ganglia (DRG) is enhanced after nerve injury, suggesting that SOCs may play a peripheral role in chronic pain. However, the expression, functional distribution and significance of the SOC family in DRG neurons remain elusive and the key components that mediate SOC entry (SOCE) are still controversial. Here, we demonstrated that the SOC family (STIM1, STIM2, Orai1, Orai2, and Orai3) was expressed in DRGs and STIM1 was mainly present in small- and medium-sized DRG neurons. Using confocal live cell imaging, Ca(2+) imaging and electrophysiology techniques, we demonstrated that depletion of the endoplasmic reticulum Ca(2+) stores induced STIM1 and STIM2 translocation, and that inhibition of STIM1 or blockage of Orai channels with pharmacological tools attenuated SOCE and SOC currents. Using the small inhibitory RNA knockdown approach, we identified STIM1, STIM2, Orai1, and Orai3 as the key components of SOCs mediating SOCE in DRG neurons. Importantly, activation of SOCs by thapsigargin induced plasma membrane depolarization and increased neuronal excitability, which were completely abolished by inhibition of SOCs or double knockdown of Orai1 and Orai3. Our findings suggest that SOCs exert an excitatory action in DRG neurons and provide a potential peripheral mechanism for modulation of pain hypersensitivity by SOC inhibition. |
format | Online Article Text |
id | pubmed-5742109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-57421092018-01-08 Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons Wei, Dongyu Mei, Yixiao Xia, Jingsheng Hu, Huijuan Front Cell Neurosci Neuroscience Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dorsal root ganglia (DRG) is enhanced after nerve injury, suggesting that SOCs may play a peripheral role in chronic pain. However, the expression, functional distribution and significance of the SOC family in DRG neurons remain elusive and the key components that mediate SOC entry (SOCE) are still controversial. Here, we demonstrated that the SOC family (STIM1, STIM2, Orai1, Orai2, and Orai3) was expressed in DRGs and STIM1 was mainly present in small- and medium-sized DRG neurons. Using confocal live cell imaging, Ca(2+) imaging and electrophysiology techniques, we demonstrated that depletion of the endoplasmic reticulum Ca(2+) stores induced STIM1 and STIM2 translocation, and that inhibition of STIM1 or blockage of Orai channels with pharmacological tools attenuated SOCE and SOC currents. Using the small inhibitory RNA knockdown approach, we identified STIM1, STIM2, Orai1, and Orai3 as the key components of SOCs mediating SOCE in DRG neurons. Importantly, activation of SOCs by thapsigargin induced plasma membrane depolarization and increased neuronal excitability, which were completely abolished by inhibition of SOCs or double knockdown of Orai1 and Orai3. Our findings suggest that SOCs exert an excitatory action in DRG neurons and provide a potential peripheral mechanism for modulation of pain hypersensitivity by SOC inhibition. Frontiers Media S.A. 2017-12-19 /pmc/articles/PMC5742109/ /pubmed/29311831 http://dx.doi.org/10.3389/fncel.2017.00400 Text en Copyright © 2017 Wei, Mei, Xia and Hu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Wei, Dongyu Mei, Yixiao Xia, Jingsheng Hu, Huijuan Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title | Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title_full | Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title_fullStr | Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title_full_unstemmed | Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title_short | Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons |
title_sort | orai1 and orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742109/ https://www.ncbi.nlm.nih.gov/pubmed/29311831 http://dx.doi.org/10.3389/fncel.2017.00400 |
work_keys_str_mv | AT weidongyu orai1andorai3mediatestoreoperatedcalciumentrycontributingtoneuronalexcitabilityindorsalrootganglionneurons AT meiyixiao orai1andorai3mediatestoreoperatedcalciumentrycontributingtoneuronalexcitabilityindorsalrootganglionneurons AT xiajingsheng orai1andorai3mediatestoreoperatedcalciumentrycontributingtoneuronalexcitabilityindorsalrootganglionneurons AT huhuijuan orai1andorai3mediatestoreoperatedcalciumentrycontributingtoneuronalexcitabilityindorsalrootganglionneurons |