Cargando…
Using Stochastic Spiking Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems
Constraint satisfaction problems (CSP) are at the core of numerous scientific and technological applications. However, CSPs belong to the NP-complete complexity class, for which the existence (or not) of efficient algorithms remains a major unsolved question in computational complexity theory. In th...
Autores principales: | Fonseca Guerra, Gabriel A., Furber, Steve B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742150/ https://www.ncbi.nlm.nih.gov/pubmed/29311791 http://dx.doi.org/10.3389/fnins.2017.00714 |
Ejemplares similares
-
SpiNNTools: The Execution Engine for the SpiNNaker Platform
por: Rowley, Andrew G. D., et al.
Publicado: (2019) -
A framework for plasticity implementation on the SpiNNaker neural architecture
por: Galluppi, Francesco, et al.
Publicado: (2015) -
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
por: Mikaitis, Mantas, et al.
Publicado: (2018) -
A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine
por: Sen-Bhattacharya, Basabdatta, et al.
Publicado: (2017) -
Structural Plasticity on the SpiNNaker Many-Core Neuromorphic System
por: Bogdan, Petruț A., et al.
Publicado: (2018)