Cargando…

Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective

In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel...

Descripción completa

Detalles Bibliográficos
Autor principal: Jacobs, Arthur M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742167/
https://www.ncbi.nlm.nih.gov/pubmed/29311877
http://dx.doi.org/10.3389/fnhum.2017.00622
Descripción
Sumario:In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials.