Cargando…
Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots
In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color). This paper focuses on cross-situational learning using the co-occurrence between...
Autores principales: | Taniguchi, Akira, Taniguchi, Tadahiro, Cangelosi, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742219/ https://www.ncbi.nlm.nih.gov/pubmed/29311888 http://dx.doi.org/10.3389/fnbot.2017.00066 |
Ejemplares similares
-
Reinforcement and inference in cross-situational word learning
por: Tilles, Paulo F. C., et al.
Publicado: (2013) -
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot
por: Taniguchi, Tadahiro, et al.
Publicado: (2018) -
Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots
por: Hagiwara, Yoshinobu, et al.
Publicado: (2018) -
Editorial: Machine Learning Methods for High-Level Cognitive Capabilities in Robotics
por: Taniguchi, Tadahiro, et al.
Publicado: (2019) -
Making fingers and words count in a cognitive robot
por: De La Cruz, Vivian M., et al.
Publicado: (2014)