Cargando…
Exciton–Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates
[Image: see text] We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole–dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wave functions c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742477/ https://www.ncbi.nlm.nih.gov/pubmed/29190421 http://dx.doi.org/10.1021/acs.jpclett.7b02745 |
Sumario: | [Image: see text] We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole–dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wave functions causes a destructive interference in the annihilation probability. For J-aggregates, where this sign is negative, the interference is constructive instead; as a result, no such coherent suppression of the annihilation rate occurs. As a consequence, room temperature annihilation rates of typical H- and J-aggregates differ by a factor of ∼3, while an order of magnitude difference is found for low-temperature aggregates with a low degree of disorder. These findings, which explain experimental observations, reveal a fundamental principle underlying exciton–exciton annihilation, with major implications for technological devices and experimental studies involving high excitation densities. |
---|