Cargando…
Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique
Xylose-assimilating yeasts with tolerance to both fermentation inhibitors (such as weak organic acids) and high temperature are required for cost-effective simultaneous saccharification and cofermentation (SSCF) of lignocellulosic materials. Here, we demonstrate the construction of a novel xylose-ut...
Autores principales: | Inokuma, Kentaro, Iwamoto, Ryo, Bamba, Takahiro, Hasunuma, Tomohisa, Kondo, Akihiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742482/ https://www.ncbi.nlm.nih.gov/pubmed/29326929 http://dx.doi.org/10.3389/fbioe.2017.00081 |
Ejemplares similares
-
Minimize the Xylitol Production in Saccharomyces cerevisiae by Balancing the Xylose Redox Metabolic Pathway
por: Zhu, Yixuan, et al.
Publicado: (2021) -
Glucose/Xylose Co-Fermenting Saccharomyces cerevisiae Increases the Production of Acetyl-CoA Derived n-Butanol From Lignocellulosic Biomass
por: Lee, Yeon-Jung, et al.
Publicado: (2022) -
Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Carotenoid Production From Xylose-Glucose Mixtures
por: Su, Buli, et al.
Publicado: (2020) -
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
por: Hasunuma, Tomohisa, et al.
Publicado: (2011) -
Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
por: Bamba, Takahiro, et al.
Publicado: (2016)