Cargando…
Multivariate Analysis and Machine Learning in Cerebral Palsy Research
Cerebral palsy (CP), a common pediatric movement disorder, causes the most severe physical disability in children. Early diagnosis in high-risk infants is critical for early intervention and possible early recovery. In recent years, multivariate analytic and machine learning (ML) approaches have bee...
Autor principal: | Zhang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742591/ https://www.ncbi.nlm.nih.gov/pubmed/29312134 http://dx.doi.org/10.3389/fneur.2017.00715 |
Ejemplares similares
-
Interpretable classification for multivariate gait analysis of cerebral palsy
por: Yoon, Changwon, et al.
Publicado: (2023) -
Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review
por: Rumajogee, Prakasham, et al.
Publicado: (2016) -
Causal Effects of Motor Control on Gait Kinematics After Orthopedic Surgery in Cerebral Palsy: A Machine-Learning Approach
por: Steele, Katherine M., et al.
Publicado: (2022) -
Hand Functioning in Children with Cerebral Palsy
por: Arnould, Carlyne, et al.
Publicado: (2014) -
Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations
por: Kaplan, Jonas T., et al.
Publicado: (2015)