Cargando…
DRMDA: deep representations‐based miRNA–disease association prediction
Recently, microRNAs (miRNAs) are confirmed to be important molecules within many crucial biological processes and therefore related to various complex human diseases. However, previous methods of predicting miRNA–disease associations have their own deficiencies. Under this circumstance, we developed...
Autores principales: | Chen, Xing, Gong, Yao, Zhang, De‐Hong, You, Zhu‐Hong, Li, Zheng‐Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742725/ https://www.ncbi.nlm.nih.gov/pubmed/28857494 http://dx.doi.org/10.1111/jcmm.13336 |
Ejemplares similares
-
LNRLMI: Linear neighbour representation for predicting lncRNA‐miRNA interactions
por: Wong, Leon, et al.
Publicado: (2019) -
PRMDA: personalized recommendation-based MiRNA-disease association prediction
por: You, Zhu-Hong, et al.
Publicado: (2017) -
SMMDA: Predicting miRNA-Disease Associations by Incorporating Multiple Similarity Profiles and a Novel Disease Representation
por: Ji, Bo-Ya, et al.
Publicado: (2022) -
DBMDA: A Unified Embedding for Sequence-Based miRNA Similarity Measure with Applications to Predict and Validate miRNA-Disease Associations
por: Zheng, Kai, et al.
Publicado: (2019) -
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017)