Cargando…

Rosmarinic acid down‐regulates NO and PGE (2) expression via MAPK pathway in rat chondrocytes

Rosmarinic acid (RosA) is a water‐soluble polyphenol, which can be isolated from many herbs such as orthosiphon diffuses and rosmarinus officinalis. Previous studies have shown that RosA possesses various biological properties. In this study, we investigate the anti‐osteoarthritic effects of RosA in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, We‐Ping, Jin, Guo‐Jun, Xiong, Yan, Hu, Peng‐Fei, Bao, Jia‐Peng, Wu, Li‐Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742733/
https://www.ncbi.nlm.nih.gov/pubmed/28945000
http://dx.doi.org/10.1111/jcmm.13322
Descripción
Sumario:Rosmarinic acid (RosA) is a water‐soluble polyphenol, which can be isolated from many herbs such as orthosiphon diffuses and rosmarinus officinalis. Previous studies have shown that RosA possesses various biological properties. In this study, we investigate the anti‐osteoarthritic effects of RosA in rat articular chondrocytes. Chondrocytes were pre‐treated with RosA, followed by the stimulation of IL‐1β. Real‐time PCR and Western blot were performed to detect the expression of matrix metalloproteinase (MMP)‐1, MMP‐3 and MMP‐13. Nitric oxide and PGE (2) production were measured by Griess reagent and enzyme‐linked immunosorbent assay (ELISA). The expression of mitogen‐activated protein kinase (MAPK) and nuclear factor‐κB (NF‐κB) was also investigated by Western blot analysis. We found that RosA down‐regulated the MMPs expression as well as nitric oxide and PGE (2) production in IL‐1β‐induced chondrocytes. In addition, RosA inhibited p38 and JNK phosphorylation as well as p65 translocation. The results suggest that RosA may be considered a possible agent in the treatment of OA.