Cargando…

Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis

AIM: To investigate the effects of Panax notoginseng (PN) on microvascular injury in colitis, its mechanisms, initial administration time and dosage. METHODS: Dextran sodium sulfate (DSS)- or iodoacetamide (IA)-induced rat colitis models were used to evaluate and investigate the effects of ethanol e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shi-Ying, Tao, Ping, Hu, Hong-Yi, Yuan, Jian-Ye, Zhao, Lei, Sun, Bo-Yun, Zhang, Wang-Jun, Lin, Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743502/
https://www.ncbi.nlm.nih.gov/pubmed/29307991
http://dx.doi.org/10.3748/wjg.v23.i47.8308
_version_ 1783288578747400192
author Wang, Shi-Ying
Tao, Ping
Hu, Hong-Yi
Yuan, Jian-Ye
Zhao, Lei
Sun, Bo-Yun
Zhang, Wang-Jun
Lin, Jiang
author_facet Wang, Shi-Ying
Tao, Ping
Hu, Hong-Yi
Yuan, Jian-Ye
Zhao, Lei
Sun, Bo-Yun
Zhang, Wang-Jun
Lin, Jiang
author_sort Wang, Shi-Ying
collection PubMed
description AIM: To investigate the effects of Panax notoginseng (PN) on microvascular injury in colitis, its mechanisms, initial administration time and dosage. METHODS: Dextran sodium sulfate (DSS)- or iodoacetamide (IA)-induced rat colitis models were used to evaluate and investigate the effects of ethanol extract of PN on microvascular injuries and their related mechanisms. PN administration was initiated at 3 and 7 d after the model was established at doses of 0.5, 1.0 and 2.0 g/kg for 7 d. The severity of colitis was evaluated by disease activity index (DAI). The pathological lesions were observed under a microscope. Microvessel density (MVD) was evaluated by immunohistochemistry. Vascular permeability was evaluated using the Evans blue method. The serum concentrations of cytokines, including vascular endothelial growth factor (VEGF)A121, VEGFA165, interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α, were detected by enzyme-linked immunosorbent assay. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were measured to evaluate the level of oxidative stress. Expression of hypoxia-inducible factor (HIF)-1α protein was detected by western blotting. RESULTS: Obvious colonic inflammation and injuries of mucosa and microvessels were observed in DSS- and IA-induced colitis groups. DAI scores, serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon were significantly higher while serum concentrations of IL-4 and IL-10 and MVD in colon were significantly lower in the colitis model groups than in the normal control group. PN promoted repair of injuries of colonic mucosa and microvessels, attenuated inflammation, and decreased DAI scores in rats with colitis. PN also decreased the serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon, and increased the serum concentrations of IL-4 and IL-10 as well as the concentration of SOD in the colon. The efficacy of PN was dosage dependent. In addition, DAI scores in the group administered PN on day 3 were significantly lower than in the group administered PN on day 7. CONCLUSION: PN repairs vascular injury in experimental colitis via attenuating inflammation and oxidative stress in the colonic mucosa. Efficacy is related to initial administration time and dose.
format Online
Article
Text
id pubmed-5743502
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Baishideng Publishing Group Inc
record_format MEDLINE/PubMed
spelling pubmed-57435022018-01-05 Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis Wang, Shi-Ying Tao, Ping Hu, Hong-Yi Yuan, Jian-Ye Zhao, Lei Sun, Bo-Yun Zhang, Wang-Jun Lin, Jiang World J Gastroenterol Basic Study AIM: To investigate the effects of Panax notoginseng (PN) on microvascular injury in colitis, its mechanisms, initial administration time and dosage. METHODS: Dextran sodium sulfate (DSS)- or iodoacetamide (IA)-induced rat colitis models were used to evaluate and investigate the effects of ethanol extract of PN on microvascular injuries and their related mechanisms. PN administration was initiated at 3 and 7 d after the model was established at doses of 0.5, 1.0 and 2.0 g/kg for 7 d. The severity of colitis was evaluated by disease activity index (DAI). The pathological lesions were observed under a microscope. Microvessel density (MVD) was evaluated by immunohistochemistry. Vascular permeability was evaluated using the Evans blue method. The serum concentrations of cytokines, including vascular endothelial growth factor (VEGF)A121, VEGFA165, interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α, were detected by enzyme-linked immunosorbent assay. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were measured to evaluate the level of oxidative stress. Expression of hypoxia-inducible factor (HIF)-1α protein was detected by western blotting. RESULTS: Obvious colonic inflammation and injuries of mucosa and microvessels were observed in DSS- and IA-induced colitis groups. DAI scores, serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon were significantly higher while serum concentrations of IL-4 and IL-10 and MVD in colon were significantly lower in the colitis model groups than in the normal control group. PN promoted repair of injuries of colonic mucosa and microvessels, attenuated inflammation, and decreased DAI scores in rats with colitis. PN also decreased the serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon, and increased the serum concentrations of IL-4 and IL-10 as well as the concentration of SOD in the colon. The efficacy of PN was dosage dependent. In addition, DAI scores in the group administered PN on day 3 were significantly lower than in the group administered PN on day 7. CONCLUSION: PN repairs vascular injury in experimental colitis via attenuating inflammation and oxidative stress in the colonic mucosa. Efficacy is related to initial administration time and dose. Baishideng Publishing Group Inc 2017-12-21 2017-12-21 /pmc/articles/PMC5743502/ /pubmed/29307991 http://dx.doi.org/10.3748/wjg.v23.i47.8308 Text en ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved. http://creativecommons.org/licenses/by-nc/4.0/ This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.
spellingShingle Basic Study
Wang, Shi-Ying
Tao, Ping
Hu, Hong-Yi
Yuan, Jian-Ye
Zhao, Lei
Sun, Bo-Yun
Zhang, Wang-Jun
Lin, Jiang
Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title_full Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title_fullStr Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title_full_unstemmed Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title_short Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis
title_sort effects of initiating time and dosage of panax notoginseng on mucosal microvascular injury in experimental colitis
topic Basic Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743502/
https://www.ncbi.nlm.nih.gov/pubmed/29307991
http://dx.doi.org/10.3748/wjg.v23.i47.8308
work_keys_str_mv AT wangshiying effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT taoping effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT huhongyi effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT yuanjianye effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT zhaolei effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT sunboyun effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT zhangwangjun effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis
AT linjiang effectsofinitiatingtimeanddosageofpanaxnotoginsengonmucosalmicrovascularinjuryinexperimentalcolitis