Cargando…
A Versatile Nanowire Platform for Highly Efficient Isolation and Direct PCR-free Colorimetric Detection of Human Papillomavirus DNA from Unprocessed Urine
Purpose: As human papillomavirus (HPV) is primarily responsible for the development of cervical cancer, significant efforts have been devoted to develop novel strategies for detecting and identifying HPV DNA in urine. The analysis of target DNA sequences in urine offers a potential alternative to co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743556/ https://www.ncbi.nlm.nih.gov/pubmed/29290816 http://dx.doi.org/10.7150/thno.21696 |
Sumario: | Purpose: As human papillomavirus (HPV) is primarily responsible for the development of cervical cancer, significant efforts have been devoted to develop novel strategies for detecting and identifying HPV DNA in urine. The analysis of target DNA sequences in urine offers a potential alternative to conventional methods as a non-invasive clinical screening and diagnostic assessment tool for the detection of HPV. However, the lack of efficient approaches to isolate and directly detect HPV DNA in urine has restricted its potential clinical use. In this study, we demonstrated a novel approach of using polyethylenimine-conjugated magnetic polypyrrole nanowires (PEI-mPpy NWs) for the extraction, identification, and PCR-free colorimetric detection of high-risk strains of HPV DNA sequences, particularly HPV-16 and HPV-18, in urine specimens of cervical cancer patients. Materials and Methods: We fabricated and characterized polyethylenimine-conjugated magnetic nanowires (PEI/mPpy NWs). PEI/mPpy NWs-based HPV DNA isolation and detection strategy appears to be a cost-effective and practical technology with greater sensitivity and accuracy than other urine-based methods. Results: The analytical and clinical performance of PEI-mPpy NWs was evaluated and compared with those of cervical swabs, demonstrating a superior type-specific concordance rate of 100% between urine and cervical swabs, even when using a small volume of urine (300 µL). Conclusion: We envision that PEI-mPpy NWs provide substantive evidence for clinical diagnosis and management of HPV-associated disease with their excellent performance in the recovery and detection of HPV DNA from minimal amounts of urine samples. |
---|