Cargando…

Does forest extent affect salamander survival? Evidence from a long‐term demographic study of a tropical newt

Forest loss has been associated with reduced survival in many vertebrates, and previous research on amphibians has mostly focused on effects at early life stages. Paramesotriton hongkongensis is a tropical newt that breeds in streams but spends up to 10 months per year in terrestrial habitats. Popul...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Anthony, Karraker, Nancy E., Dudgeon, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743689/
https://www.ncbi.nlm.nih.gov/pubmed/29299273
http://dx.doi.org/10.1002/ece3.3623
Descripción
Sumario:Forest loss has been associated with reduced survival in many vertebrates, and previous research on amphibians has mostly focused on effects at early life stages. Paramesotriton hongkongensis is a tropical newt that breeds in streams but spends up to 10 months per year in terrestrial habitats. Populations are threatened by habitat degradation and collection for the pet trade, but the cryptic terrestrial lifestyle of this newt has limited our understanding of its population ecology, which inhibits development of a species‐specific conservation plan. We conducted an eight‐year (2007–2014) mark–recapture study on four P. hongkongensis populations in Hong Kong and used these data to evaluate relationships between forest cover, body size, and rainfall on survival and to estimate population sizes. Hong Kong has been subjected to repeated historic territory‐wide deforestation, and thus, we wanted to determine whether there was a link between forest extent as a proxy of habitat quality and newt demography. Annual survival was positively associated with forest cover within core habitat of all populations and negatively related to body size. Mean annual survival (~60%) was similar to that of other stream‐dwelling amphibians, but varied among years and declined substantially in 2012–2013, perhaps due to illegal collection. Despite the link between forest extent and survival, population sizes declined at the most forested site by 40% and increased by 104% and 134% at two others. Forest protection and consequential secondary succession during recent decades in Hong Kong may have been responsible for persistence of P. hongkongensis populations.