Cargando…
Restoration of DAP Kinase Tumor Suppressor Function: A Therapeutic Strategy to Selectively Induce Apoptosis in Cancer Cells Using Immunokinase Fusion Proteins
Targeted cancer immunotherapy is designed to selectively eliminate tumor cells without harming the surrounding healthy tissues. The death-associated protein kinases (DAPk) are a family of proapoptotic proteins that play a vital role in the regulation of cellular process and have been identified as p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744083/ https://www.ncbi.nlm.nih.gov/pubmed/28976934 http://dx.doi.org/10.3390/biomedicines5040059 |
Sumario: | Targeted cancer immunotherapy is designed to selectively eliminate tumor cells without harming the surrounding healthy tissues. The death-associated protein kinases (DAPk) are a family of proapoptotic proteins that play a vital role in the regulation of cellular process and have been identified as positive mediators of apoptosis via extrinsic and intrinsic death-regulating signaling pathways. Tumor suppressor activities have been shown for DAPk1 and DAPk2 and they are downregulated in e.g., Hodgkin’s (HL) and B cell lymphoma (CLL), respectively. Here, we review a targeted therapeutic approach which involves reconstitution of DAPks by the generation of immunokinase fusion proteins. These recombinant proteins consist of a disease-specific ligand fused to a modified version of DAPk1 or DAPk2. HL was targeted via CD30 and B-CLL via CD22 cell surface antigens. |
---|