Cargando…

Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen

The addition of surface functional groups to multi-walled carbon nanotubes (MWCNTs) expands their application in engineering, materials, and life science. In the study, we explored the antifungal activities of MWCNTs with different surface groups against an important plant pathogenic fungi Fusarium...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiuping, Zhou, Zilin, Chen, Fangfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744310/
https://www.ncbi.nlm.nih.gov/pubmed/29189733
http://dx.doi.org/10.3390/ma10121375
Descripción
Sumario:The addition of surface functional groups to multi-walled carbon nanotubes (MWCNTs) expands their application in engineering, materials, and life science. In the study, we explored the antifungal activities of MWCNTs with different surface groups against an important plant pathogenic fungi Fusarium graminearum. All of the OH-, COOH-, and NH(2)-modified MWCNTs showed enhanced inhibition in spore elongation and germination than the pristine MWCNTs. The length of spores decreased by almost a half from 54.5 μm to 28.3, 27.4, and 29.5 μm, after being treated with 500 μg·mL(−1) MWCNTs-COOH, MWCNTs-OH, and MWCNTs-NH(2) separately. Furthermore, the spore germination was remarkably inhibited by surface-modified MWCNTs, and the germination rate was only about 18.2%, three times lower than pristine MWCNTs. The possible antifungal mechanism of MWCNTs is also discussed. Given the superior antifungal activity of surface modified MWCNTs and the fact that MWCNTs can be mass-produced with facile surface modification at low cost, it is expected that this carbon nanomaterial may find important applications in plant protection.