Cargando…
Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile
Unopposed estrogen stimulation and insulin resistance are known to play important roles in endometrial cancer (EC), but the interaction between these two factors and how they contribute to endometrial lesions are not completely elucidated. To investigate the endometrial transcriptome profile and the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744625/ https://www.ncbi.nlm.nih.gov/pubmed/29133384 http://dx.doi.org/10.1530/EC-17-0315 |
_version_ | 1783288783994617856 |
---|---|
author | Cheng, Yali Lv, Qiaoying Xie, Bingying Yang, Bingyi Shan, Weiwei Ning, Chengcheng Li, Bing Xie, Liying Gu, Chao Luo, Xuezhen Chen, Xiaojun Zhu, Qin |
author_facet | Cheng, Yali Lv, Qiaoying Xie, Bingying Yang, Bingyi Shan, Weiwei Ning, Chengcheng Li, Bing Xie, Liying Gu, Chao Luo, Xuezhen Chen, Xiaojun Zhu, Qin |
author_sort | Cheng, Yali |
collection | PubMed |
description | Unopposed estrogen stimulation and insulin resistance are known to play important roles in endometrial cancer (EC), but the interaction between these two factors and how they contribute to endometrial lesions are not completely elucidated. To investigate the endometrial transcriptome profile and the associated molecular pathway alterations, we established an ovariectomized C57BL/6 mouse model treated with subcutaneous implantation of 17-β estradiol (E2) pellet and/or high-fat diet (HFD) for 12 weeks to mimic sustained estrogen stimulation and insulin resistance. Histomorphologically, we found that both E2 and E2 + HFD groups showed markedly enlarged uterus and increased number of endometrial glands. The endometrium samples were collected for microarray assay. GO and KEGG analysis showed that genes regulated by E2 and/or HFD are mainly responsible for immune response, inflammatory response and metabolic pathways. Further IPA analysis demonstrated that the acute phase response signaling, NF-κB signaling, leukocyte extravasation signaling, PPAR signaling and LXR/RXR activation pathways are mainly involved in the pathways above. In addition, the genes modulated reciprocally by E2 and/or HFD were also analyzed, and their crosstalk mainly focuses on enhancing one another’s activity. The combination analysis of microarray data and TCGA database provided potential diagnostic or therapeutic targets for EC. Further validation was performed in mice endometrium and human EC cell lines. In conclusion, this study unraveled the endometrial transcriptome profile alterations affected by E2 and/or HFD that may disturb endometrial homeostasis and contribute to the development of endometrial hyperplasia. |
format | Online Article Text |
id | pubmed-5744625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Bioscientifica Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-57446252018-01-04 Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile Cheng, Yali Lv, Qiaoying Xie, Bingying Yang, Bingyi Shan, Weiwei Ning, Chengcheng Li, Bing Xie, Liying Gu, Chao Luo, Xuezhen Chen, Xiaojun Zhu, Qin Endocr Connect Research Unopposed estrogen stimulation and insulin resistance are known to play important roles in endometrial cancer (EC), but the interaction between these two factors and how they contribute to endometrial lesions are not completely elucidated. To investigate the endometrial transcriptome profile and the associated molecular pathway alterations, we established an ovariectomized C57BL/6 mouse model treated with subcutaneous implantation of 17-β estradiol (E2) pellet and/or high-fat diet (HFD) for 12 weeks to mimic sustained estrogen stimulation and insulin resistance. Histomorphologically, we found that both E2 and E2 + HFD groups showed markedly enlarged uterus and increased number of endometrial glands. The endometrium samples were collected for microarray assay. GO and KEGG analysis showed that genes regulated by E2 and/or HFD are mainly responsible for immune response, inflammatory response and metabolic pathways. Further IPA analysis demonstrated that the acute phase response signaling, NF-κB signaling, leukocyte extravasation signaling, PPAR signaling and LXR/RXR activation pathways are mainly involved in the pathways above. In addition, the genes modulated reciprocally by E2 and/or HFD were also analyzed, and their crosstalk mainly focuses on enhancing one another’s activity. The combination analysis of microarray data and TCGA database provided potential diagnostic or therapeutic targets for EC. Further validation was performed in mice endometrium and human EC cell lines. In conclusion, this study unraveled the endometrial transcriptome profile alterations affected by E2 and/or HFD that may disturb endometrial homeostasis and contribute to the development of endometrial hyperplasia. Bioscientifica Ltd 2017-11-13 /pmc/articles/PMC5744625/ /pubmed/29133384 http://dx.doi.org/10.1530/EC-17-0315 Text en © 2018 The authors http://creativecommons.org/licenses/by-nc/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Research Cheng, Yali Lv, Qiaoying Xie, Bingying Yang, Bingyi Shan, Weiwei Ning, Chengcheng Li, Bing Xie, Liying Gu, Chao Luo, Xuezhen Chen, Xiaojun Zhu, Qin Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title | Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title_full | Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title_fullStr | Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title_full_unstemmed | Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title_short | Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile |
title_sort | estrogen and high-fat diet induced alterations in c57bl/6 mice endometrial transcriptome profile |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744625/ https://www.ncbi.nlm.nih.gov/pubmed/29133384 http://dx.doi.org/10.1530/EC-17-0315 |
work_keys_str_mv | AT chengyali estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT lvqiaoying estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT xiebingying estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT yangbingyi estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT shanweiwei estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT ningchengcheng estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT libing estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT xieliying estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT guchao estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT luoxuezhen estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT chenxiaojun estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile AT zhuqin estrogenandhighfatdietinducedalterationsinc57bl6miceendometrialtranscriptomeprofile |