Cargando…

Small population bias and sampling effects in stochastic mortality modelling

We propose the use of parametric bootstrap methods to investigate the finite sample distribution of the maximum likelihood estimator for the parameter vector of a stochastic mortality model. Particular emphasis is placed on the effect that the size of the underlying population has on the distributio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Liang, Cairns, Andrew J. G., Kleinow, Torsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744643/
https://www.ncbi.nlm.nih.gov/pubmed/29323361
http://dx.doi.org/10.1007/s13385-016-0143-x
Descripción
Sumario:We propose the use of parametric bootstrap methods to investigate the finite sample distribution of the maximum likelihood estimator for the parameter vector of a stochastic mortality model. Particular emphasis is placed on the effect that the size of the underlying population has on the distribution of the MLE in finite samples, and on the dependency structure of the resulting estimator: that is, the dependencies between estimators for the age, period and cohort effects in our model. In addition, we study the distribution of a likelihood ratio test statistic where we test a null hypothesis about the true parameters in our model. Finally, we apply the LRT to the cohort effects estimated from observed mortality rates for females in England and Wales and males in Scotland.