Cargando…
Small population bias and sampling effects in stochastic mortality modelling
We propose the use of parametric bootstrap methods to investigate the finite sample distribution of the maximum likelihood estimator for the parameter vector of a stochastic mortality model. Particular emphasis is placed on the effect that the size of the underlying population has on the distributio...
Autores principales: | Chen, Liang, Cairns, Andrew J. G., Kleinow, Torsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744643/ https://www.ncbi.nlm.nih.gov/pubmed/29323361 http://dx.doi.org/10.1007/s13385-016-0143-x |
Ejemplares similares
-
Modeling bias and variation in the stochastic processes of small RNA sequencing
por: Argyropoulos, Christos, et al.
Publicado: (2017) -
Applied quantitative finance: theory and computational tools
por: Härdle, Wolfgang, et al.
Publicado: (2002) -
Introns control stochastic allele expression bias
por: Sands, Bryan, et al.
Publicado: (2021) -
Origin of sample size effect: Stochastic dislocation formation in crystalline metals at small scales
por: Huang, Guan-Rong, et al.
Publicado: (2016) -
Bias caused by sampling error in meta-analysis with small sample sizes
por: Lin, Lifeng
Publicado: (2018)