Cargando…
Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid
BACKGROUND: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), wh...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Environmental Health Perspectives
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744695/ https://www.ncbi.nlm.nih.gov/pubmed/28696208 http://dx.doi.org/10.1289/EHP876 |
_version_ | 1783288793786220544 |
---|---|
author | Vargas Buonfiglio, Luis G. Mudunkotuwa, Imali A. Abou Alaiwa, Mahmoud H. Vanegas Calderón, Oriana G. Borcherding, Jennifer A. Gerke, Alicia K. Zabner, Joseph Grassian, Vicki H. Comellas, Alejandro P. |
author_facet | Vargas Buonfiglio, Luis G. Mudunkotuwa, Imali A. Abou Alaiwa, Mahmoud H. Vanegas Calderón, Oriana G. Borcherding, Jennifer A. Gerke, Alicia K. Zabner, Joseph Grassian, Vicki H. Comellas, Alejandro P. |
author_sort | Vargas Buonfiglio, Luis G. |
collection | PubMed |
description | BACKGROUND: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. OBJECTIVES: We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. METHODS: We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs β-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. RESULTS: We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle–protein complexes. CONCLUSION: We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876 |
format | Online Article Text |
id | pubmed-5744695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Environmental Health Perspectives |
record_format | MEDLINE/PubMed |
spelling | pubmed-57446952017-12-31 Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid Vargas Buonfiglio, Luis G. Mudunkotuwa, Imali A. Abou Alaiwa, Mahmoud H. Vanegas Calderón, Oriana G. Borcherding, Jennifer A. Gerke, Alicia K. Zabner, Joseph Grassian, Vicki H. Comellas, Alejandro P. Environ Health Perspect Research BACKGROUND: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. OBJECTIVES: We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. METHODS: We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs β-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. RESULTS: We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle–protein complexes. CONCLUSION: We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876 Environmental Health Perspectives 2017-07-05 /pmc/articles/PMC5744695/ /pubmed/28696208 http://dx.doi.org/10.1289/EHP876 Text en EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted. |
spellingShingle | Research Vargas Buonfiglio, Luis G. Mudunkotuwa, Imali A. Abou Alaiwa, Mahmoud H. Vanegas Calderón, Oriana G. Borcherding, Jennifer A. Gerke, Alicia K. Zabner, Joseph Grassian, Vicki H. Comellas, Alejandro P. Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title | Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title_full | Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title_fullStr | Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title_full_unstemmed | Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title_short | Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid |
title_sort | effects of coal fly ash particulate matter on the antimicrobial activity of airway surface liquid |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744695/ https://www.ncbi.nlm.nih.gov/pubmed/28696208 http://dx.doi.org/10.1289/EHP876 |
work_keys_str_mv | AT vargasbuonfiglioluisg effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT mudunkotuwaimalia effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT aboualaiwamahmoudh effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT vanegascalderonorianag effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT borcherdingjennifera effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT gerkealiciak effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT zabnerjoseph effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT grassianvickih effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid AT comellasalejandrop effectsofcoalflyashparticulatematterontheantimicrobialactivityofairwaysurfaceliquid |