Cargando…

The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis

Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Loeschcke, Anita, Dienst, Dennis, Wewer, Vera, Hage-Hülsmann, Jennifer, Dietsch, Maximilian, Kranz-Finger, Sarah, Hüren, Vanessa, Metzger, Sabine, Urlacher, Vlada B., Gigolashvili, Tamara, Kopriva, Stanislav, Axmann, Ilka M., Drepper, Thomas, Jaeger, Karl-Erich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744966/
https://www.ncbi.nlm.nih.gov/pubmed/29281679
http://dx.doi.org/10.1371/journal.pone.0189816
_version_ 1783288844247891968
author Loeschcke, Anita
Dienst, Dennis
Wewer, Vera
Hage-Hülsmann, Jennifer
Dietsch, Maximilian
Kranz-Finger, Sarah
Hüren, Vanessa
Metzger, Sabine
Urlacher, Vlada B.
Gigolashvili, Tamara
Kopriva, Stanislav
Axmann, Ilka M.
Drepper, Thomas
Jaeger, Karl-Erich
author_facet Loeschcke, Anita
Dienst, Dennis
Wewer, Vera
Hage-Hülsmann, Jennifer
Dietsch, Maximilian
Kranz-Finger, Sarah
Hüren, Vanessa
Metzger, Sabine
Urlacher, Vlada B.
Gigolashvili, Tamara
Kopriva, Stanislav
Axmann, Ilka M.
Drepper, Thomas
Jaeger, Karl-Erich
author_sort Loeschcke, Anita
collection PubMed
description Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications.
format Online
Article
Text
id pubmed-5744966
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-57449662018-01-09 The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis Loeschcke, Anita Dienst, Dennis Wewer, Vera Hage-Hülsmann, Jennifer Dietsch, Maximilian Kranz-Finger, Sarah Hüren, Vanessa Metzger, Sabine Urlacher, Vlada B. Gigolashvili, Tamara Kopriva, Stanislav Axmann, Ilka M. Drepper, Thomas Jaeger, Karl-Erich PLoS One Research Article Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications. Public Library of Science 2017-12-27 /pmc/articles/PMC5744966/ /pubmed/29281679 http://dx.doi.org/10.1371/journal.pone.0189816 Text en © 2017 Loeschcke et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Loeschcke, Anita
Dienst, Dennis
Wewer, Vera
Hage-Hülsmann, Jennifer
Dietsch, Maximilian
Kranz-Finger, Sarah
Hüren, Vanessa
Metzger, Sabine
Urlacher, Vlada B.
Gigolashvili, Tamara
Kopriva, Stanislav
Axmann, Ilka M.
Drepper, Thomas
Jaeger, Karl-Erich
The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title_full The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title_fullStr The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title_full_unstemmed The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title_short The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
title_sort photosynthetic bacteria rhodobacter capsulatus and synechocystis sp. pcc 6803 as new hosts for cyclic plant triterpene biosynthesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744966/
https://www.ncbi.nlm.nih.gov/pubmed/29281679
http://dx.doi.org/10.1371/journal.pone.0189816
work_keys_str_mv AT loeschckeanita thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT dienstdennis thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT wewervera thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT hagehulsmannjennifer thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT dietschmaximilian thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT kranzfingersarah thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT hurenvanessa thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT metzgersabine thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT urlachervladab thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT gigolashvilitamara thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT koprivastanislav thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT axmannilkam thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT drepperthomas thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT jaegerkarlerich thephotosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT loeschckeanita photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT dienstdennis photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT wewervera photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT hagehulsmannjennifer photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT dietschmaximilian photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT kranzfingersarah photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT hurenvanessa photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT metzgersabine photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT urlachervladab photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT gigolashvilitamara photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT koprivastanislav photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT axmannilkam photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT drepperthomas photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis
AT jaegerkarlerich photosyntheticbacteriarhodobactercapsulatusandsynechocystissppcc6803asnewhostsforcyclicplanttriterpenebiosynthesis