Cargando…
Sparse Bayesian classification and feature selection for biological expression data with high correlations
Classification models built on biological expression data are increasingly used to predict distinct disease subtypes. Selected features that separate sample groups can be the candidates of biomarkers, helping us to discover biological functions/pathways. However, three challenges are associated with...
Autores principales: | Yang, Xian, Pan, Wei, Guo, Yike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744982/ https://www.ncbi.nlm.nih.gov/pubmed/29281700 http://dx.doi.org/10.1371/journal.pone.0189541 |
Ejemplares similares
-
Sparse representation approaches for the classification of high-dimensional biological data
por: Li, Yifeng, et al.
Publicado: (2013) -
Sparse feature selection for classification and prediction of metastasis in endometrial cancer
por: Ahsen, Mehmet Eren, et al.
Publicado: (2017) -
Sparse bayesian learning for genomic selection in yeast
por: Ayat, Maryam, et al.
Publicado: (2022) -
Bayesian inference on quasi-sparse count data
por: Datta, Jyotishka, et al.
Publicado: (2016) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)