Cargando…

A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility

Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. Thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauckneht, Matteo, Morbelli, Silvia, Fiz, Francesco, Ferrarazzo, Giulia, Piva, Roberta, Nieri, Alberto, Sarocchi, Matteo, Spallarossa, Paolo, Canepari, Maria Elisa, Arboscello, Eleonora, Bellodi, Andrea, Massaia, Massimo, Gallamini, Andrea, Bruzzi, Paolo, Marini, Cecilia, Sambuceti, Gianmario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745393/
https://www.ncbi.nlm.nih.gov/pubmed/29072629
http://dx.doi.org/10.3390/diagnostics7040057
_version_ 1783288897166376960
author Bauckneht, Matteo
Morbelli, Silvia
Fiz, Francesco
Ferrarazzo, Giulia
Piva, Roberta
Nieri, Alberto
Sarocchi, Matteo
Spallarossa, Paolo
Canepari, Maria Elisa
Arboscello, Eleonora
Bellodi, Andrea
Massaia, Massimo
Gallamini, Andrea
Bruzzi, Paolo
Marini, Cecilia
Sambuceti, Gianmario
author_facet Bauckneht, Matteo
Morbelli, Silvia
Fiz, Francesco
Ferrarazzo, Giulia
Piva, Roberta
Nieri, Alberto
Sarocchi, Matteo
Spallarossa, Paolo
Canepari, Maria Elisa
Arboscello, Eleonora
Bellodi, Andrea
Massaia, Massimo
Gallamini, Andrea
Bruzzi, Paolo
Marini, Cecilia
Sambuceti, Gianmario
author_sort Bauckneht, Matteo
collection PubMed
description Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m(2) per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting.
format Online
Article
Text
id pubmed-5745393
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-57453932018-01-02 A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility Bauckneht, Matteo Morbelli, Silvia Fiz, Francesco Ferrarazzo, Giulia Piva, Roberta Nieri, Alberto Sarocchi, Matteo Spallarossa, Paolo Canepari, Maria Elisa Arboscello, Eleonora Bellodi, Andrea Massaia, Massimo Gallamini, Andrea Bruzzi, Paolo Marini, Cecilia Sambuceti, Gianmario Diagnostics (Basel) Article Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m(2) per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting. MDPI 2017-10-26 /pmc/articles/PMC5745393/ /pubmed/29072629 http://dx.doi.org/10.3390/diagnostics7040057 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bauckneht, Matteo
Morbelli, Silvia
Fiz, Francesco
Ferrarazzo, Giulia
Piva, Roberta
Nieri, Alberto
Sarocchi, Matteo
Spallarossa, Paolo
Canepari, Maria Elisa
Arboscello, Eleonora
Bellodi, Andrea
Massaia, Massimo
Gallamini, Andrea
Bruzzi, Paolo
Marini, Cecilia
Sambuceti, Gianmario
A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title_full A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title_fullStr A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title_full_unstemmed A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title_short A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
title_sort score-based approach to (18)f-fdg pet images as a tool to describe metabolic predictors of myocardial doxorubicin susceptibility
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745393/
https://www.ncbi.nlm.nih.gov/pubmed/29072629
http://dx.doi.org/10.3390/diagnostics7040057
work_keys_str_mv AT baucknehtmatteo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT morbellisilvia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT fizfrancesco ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT ferrarazzogiulia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT pivaroberta ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT nierialberto ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT sarocchimatteo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT spallarossapaolo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT caneparimariaelisa ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT arboscelloeleonora ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT bellodiandrea ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT massaiamassimo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT gallaminiandrea ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT bruzzipaolo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT marinicecilia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT sambucetigianmario ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT baucknehtmatteo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT morbellisilvia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT fizfrancesco scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT ferrarazzogiulia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT pivaroberta scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT nierialberto scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT sarocchimatteo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT spallarossapaolo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT caneparimariaelisa scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT arboscelloeleonora scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT bellodiandrea scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT massaiamassimo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT gallaminiandrea scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT bruzzipaolo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT marinicecilia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility
AT sambucetigianmario scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility