Cargando…
A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility
Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. Thes...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745393/ https://www.ncbi.nlm.nih.gov/pubmed/29072629 http://dx.doi.org/10.3390/diagnostics7040057 |
_version_ | 1783288897166376960 |
---|---|
author | Bauckneht, Matteo Morbelli, Silvia Fiz, Francesco Ferrarazzo, Giulia Piva, Roberta Nieri, Alberto Sarocchi, Matteo Spallarossa, Paolo Canepari, Maria Elisa Arboscello, Eleonora Bellodi, Andrea Massaia, Massimo Gallamini, Andrea Bruzzi, Paolo Marini, Cecilia Sambuceti, Gianmario |
author_facet | Bauckneht, Matteo Morbelli, Silvia Fiz, Francesco Ferrarazzo, Giulia Piva, Roberta Nieri, Alberto Sarocchi, Matteo Spallarossa, Paolo Canepari, Maria Elisa Arboscello, Eleonora Bellodi, Andrea Massaia, Massimo Gallamini, Andrea Bruzzi, Paolo Marini, Cecilia Sambuceti, Gianmario |
author_sort | Bauckneht, Matteo |
collection | PubMed |
description | Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m(2) per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting. |
format | Online Article Text |
id | pubmed-5745393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57453932018-01-02 A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility Bauckneht, Matteo Morbelli, Silvia Fiz, Francesco Ferrarazzo, Giulia Piva, Roberta Nieri, Alberto Sarocchi, Matteo Spallarossa, Paolo Canepari, Maria Elisa Arboscello, Eleonora Bellodi, Andrea Massaia, Massimo Gallamini, Andrea Bruzzi, Paolo Marini, Cecilia Sambuceti, Gianmario Diagnostics (Basel) Article Purpose: To verify the capability of (18)F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. Methods: 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin’s disease (DXR dose: 40–50 mg/m(2) per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. Results: In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. Conclusions: the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting. MDPI 2017-10-26 /pmc/articles/PMC5745393/ /pubmed/29072629 http://dx.doi.org/10.3390/diagnostics7040057 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bauckneht, Matteo Morbelli, Silvia Fiz, Francesco Ferrarazzo, Giulia Piva, Roberta Nieri, Alberto Sarocchi, Matteo Spallarossa, Paolo Canepari, Maria Elisa Arboscello, Eleonora Bellodi, Andrea Massaia, Massimo Gallamini, Andrea Bruzzi, Paolo Marini, Cecilia Sambuceti, Gianmario A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title | A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title_full | A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title_fullStr | A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title_full_unstemmed | A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title_short | A Score-Based Approach to (18)F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility |
title_sort | score-based approach to (18)f-fdg pet images as a tool to describe metabolic predictors of myocardial doxorubicin susceptibility |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745393/ https://www.ncbi.nlm.nih.gov/pubmed/29072629 http://dx.doi.org/10.3390/diagnostics7040057 |
work_keys_str_mv | AT baucknehtmatteo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT morbellisilvia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT fizfrancesco ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT ferrarazzogiulia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT pivaroberta ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT nierialberto ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT sarocchimatteo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT spallarossapaolo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT caneparimariaelisa ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT arboscelloeleonora ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT bellodiandrea ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT massaiamassimo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT gallaminiandrea ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT bruzzipaolo ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT marinicecilia ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT sambucetigianmario ascorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT baucknehtmatteo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT morbellisilvia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT fizfrancesco scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT ferrarazzogiulia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT pivaroberta scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT nierialberto scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT sarocchimatteo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT spallarossapaolo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT caneparimariaelisa scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT arboscelloeleonora scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT bellodiandrea scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT massaiamassimo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT gallaminiandrea scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT bruzzipaolo scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT marinicecilia scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility AT sambucetigianmario scorebasedapproachto18ffdgpetimagesasatooltodescribemetabolicpredictorsofmyocardialdoxorubicinsusceptibility |