Cargando…
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
BACKGROUND: Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated succe...
Autores principales: | Han, Youngmahn, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745637/ https://www.ncbi.nlm.nih.gov/pubmed/29281985 http://dx.doi.org/10.1186/s12859-017-1997-x |
Ejemplares similares
-
DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction
por: Liu, Zhonghao, et al.
Publicado: (2019) -
Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction
por: Chen, Ziqi, et al.
Publicado: (2021) -
Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding
por: Ray, Surajit, et al.
Publicado: (2007) -
In silico design of MHC class I high binding affinity peptides through motifs activation map
por: Xiao, Zhoujian, et al.
Publicado: (2018) -
NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
por: Nielsen, Morten, et al.
Publicado: (2009)