Cargando…
The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams
BACKGROUND: Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefor...
Autores principales: | Yu, Yuanyuan, Li, Hongkai, Sun, Xiaoru, Su, Ping, Wang, Tingting, Liu, Yi, Yuan, Zhongshang, Liu, Yanxun, Xue, Fuzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745640/ https://www.ncbi.nlm.nih.gov/pubmed/29281984 http://dx.doi.org/10.1186/s12874-017-0449-7 |
Ejemplares similares
-
A simulation study on matched case-control designs in the perspective of causal diagrams
por: Li, Hongkai, et al.
Publicado: (2016) -
A novel method for controlling unobserved confounding using double confounders
por: Liu, Lu, et al.
Publicado: (2020) -
Impact of nonrandom selection mechanisms on the causal effect estimation for two-sample Mendelian randomization methods
por: Yu, Yuanyuan, et al.
Publicado: (2022) -
Sensitivity analysis for mistakenly adjusting for mediators in estimating total effect in observational studies
por: Wang, Tingting, et al.
Publicado: (2017) -
Noncollapsibility and its role in quantifying confounding bias in logistic regression
por: Schuster, Noah A., et al.
Publicado: (2021)