Cargando…
Machine-Learning Classifier for Patients with Major Depressive Disorder: Multifeature Approach Based on a High-Order Minimum Spanning Tree Functional Brain Network
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connect...
Autores principales: | Guo, Hao, Qin, Mengna, Chen, Junjie, Xu, Yong, Xiang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745775/ https://www.ncbi.nlm.nih.gov/pubmed/29387141 http://dx.doi.org/10.1155/2017/4820935 |
Ejemplares similares
-
Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset
por: Guo, Hao, et al.
Publicado: (2017) -
Minimum spanning tree analysis of the human connectome
por: van Dellen, Edwin, et al.
Publicado: (2018) -
EEG Functional Connectivity Underlying Emotional Valance and Arousal Using Minimum Spanning Trees
por: Cao, Rui, et al.
Publicado: (2020) -
Integrating the Local Property and Topological Structure in the Minimum Spanning Tree Brain Functional Network for Classification of Early Mild Cognitive Impairment
por: Cui, Xiaohong, et al.
Publicado: (2018) -
Inference of Cerebrovascular Topology With Geodesic Minimum Spanning Trees
Publicado: (2018)