Cargando…
Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition
BACKGROUND: Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genoty...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745964/ https://www.ncbi.nlm.nih.gov/pubmed/29281962 http://dx.doi.org/10.1186/s12711-017-0369-3 |