Cargando…

The meiosis-specific Cdc20 family-member Ama1 promotes binding of the Ssp2 activator to the Smk1 MAP kinase

Smk1 is a meiosis-specific MAP kinase (MAPK) in budding yeast that is required for spore formation. It is localized to prospore membranes (PSMs), the structures that engulf haploid cells during meiosis II (MII). Similar to canonically activated MAPKs, Smk1 is controlled by phosphorylation of its act...

Descripción completa

Detalles Bibliográficos
Autores principales: Omerza, Gregory, Tio, Chong Wai, Philips, Timothy, Diamond, Aviva, Neiman, Aaron M., Winter, Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746067/
https://www.ncbi.nlm.nih.gov/pubmed/29118076
http://dx.doi.org/10.1091/mbc.E17-07-0473
Descripción
Sumario:Smk1 is a meiosis-specific MAP kinase (MAPK) in budding yeast that is required for spore formation. It is localized to prospore membranes (PSMs), the structures that engulf haploid cells during meiosis II (MII). Similar to canonically activated MAPKs, Smk1 is controlled by phosphorylation of its activation-loop threonine (T) and tyrosine (Y). However, activation loop phosphorylation occurs via a noncanonical two-step mechanism in which 1) the cyclin-dependent kinase activating kinase Cak1 phosphorylaytes T207 during MI, and 2) Smk1 autophosphorylates Y209 as MII draws to a close. Autophosphorylation of Y209 and catalytic activity for substrates require Ssp2, a meiosis-specific protein that is translationally repressed until anaphase of MII. Ama1 is a meiosis-specific targeting subunit of the anaphase-promoting complex/cyclosome that regulates multiple steps in meiotic development, including exit from MII. Here, we show that Ama1 activates autophosphorylation of Smk1 on Y209 by promoting formation of the Ssp2/Smk1 complex at PSMs. These findings link meiotic exit to Smk1 activation and spore wall assembly.