Cargando…

Comparative analysis of the end-joining activity of several DNA ligases

DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DN...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauer, Robert J., Zhelkovsky, Alexander, Bilotti, Katharina, Crowell, Laura E., Evans, Thomas C., McReynolds, Larry A., Lohman, Gregory J. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746248/
https://www.ncbi.nlm.nih.gov/pubmed/29284038
http://dx.doi.org/10.1371/journal.pone.0190062
_version_ 1783289066709581824
author Bauer, Robert J.
Zhelkovsky, Alexander
Bilotti, Katharina
Crowell, Laura E.
Evans, Thomas C.
McReynolds, Larry A.
Lohman, Gregory J. S.
author_facet Bauer, Robert J.
Zhelkovsky, Alexander
Bilotti, Katharina
Crowell, Laura E.
Evans, Thomas C.
McReynolds, Larry A.
Lohman, Gregory J. S.
author_sort Bauer, Robert J.
collection PubMed
description DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1) DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase) were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3′- and 5′- single base overhangs, and 5′-two base overhangs). This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5′-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3′-single base overhangs and 2-base overhangs effectively with little blunt or 5′- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5′-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain) were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference.
format Online
Article
Text
id pubmed-5746248
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-57462482018-01-08 Comparative analysis of the end-joining activity of several DNA ligases Bauer, Robert J. Zhelkovsky, Alexander Bilotti, Katharina Crowell, Laura E. Evans, Thomas C. McReynolds, Larry A. Lohman, Gregory J. S. PLoS One Research Article DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1) DNA ligase, human DNA ligase 3, and Escherichia coli DNA ligase) were tested for their ability to ligate DNA fragments with several difficult to ligate end structures (blunt-ended termini, 3′- and 5′- single base overhangs, and 5′-two base overhangs). This analysis revealed that T4 DNA ligase, the most common enzyme utilized for in vitro ligation, had its greatest activity on blunt- and 2-base overhangs, and poorest on 5′-single base overhangs. Other ligases had different substrate specificity: T3 DNA ligase ligated only blunt ends well; PBCV1 DNA ligase joined 3′-single base overhangs and 2-base overhangs effectively with little blunt or 5′- single base overhang activity; and human ligase 3 had highest activity on blunt ends and 5′-single base overhangs. There is no correlation of activity among ligases on blunt DNA ends with their activity on single base overhangs. In addition, DNA binding domains (Sso7d, hLig3 zinc finger, and T4 DNA ligase N-terminal domain) were fused to PBCV1 DNA ligase to explore whether modified binding to DNA would lead to greater activity on these difficult to ligate substrates. These engineered ligases showed both an increased binding affinity for DNA and increased activity, but did not alter the relative substrate preferences of PBCV1 DNA ligase, indicating active site structure plays a role in determining substrate preference. Public Library of Science 2017-12-28 /pmc/articles/PMC5746248/ /pubmed/29284038 http://dx.doi.org/10.1371/journal.pone.0190062 Text en © 2017 Bauer et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bauer, Robert J.
Zhelkovsky, Alexander
Bilotti, Katharina
Crowell, Laura E.
Evans, Thomas C.
McReynolds, Larry A.
Lohman, Gregory J. S.
Comparative analysis of the end-joining activity of several DNA ligases
title Comparative analysis of the end-joining activity of several DNA ligases
title_full Comparative analysis of the end-joining activity of several DNA ligases
title_fullStr Comparative analysis of the end-joining activity of several DNA ligases
title_full_unstemmed Comparative analysis of the end-joining activity of several DNA ligases
title_short Comparative analysis of the end-joining activity of several DNA ligases
title_sort comparative analysis of the end-joining activity of several dna ligases
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746248/
https://www.ncbi.nlm.nih.gov/pubmed/29284038
http://dx.doi.org/10.1371/journal.pone.0190062
work_keys_str_mv AT bauerrobertj comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT zhelkovskyalexander comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT bilottikatharina comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT crowelllaurae comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT evansthomasc comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT mcreynoldslarrya comparativeanalysisoftheendjoiningactivityofseveraldnaligases
AT lohmangregoryjs comparativeanalysisoftheendjoiningactivityofseveraldnaligases