Cargando…

Global gene expression analysis combined with a genomics approach for the identification of signal transduction networks involved in postnatal mouse myocardial proliferation and development

Mammalian cardiomyocytes may permanently lose their ability to proliferate after birth. Therefore, studying the proliferation and growth arrest of cardiomyocytes during the postnatal period may enhance the current understanding regarding this molecular mechanism. The present study identified the dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruoxin, Su, Chao, Wang, Xinting, Fu, Qiang, Gao, Xingjie, Zhang, Chunyan, Yang, Jie, Yang, Xi, Wei, Minxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746306/
https://www.ncbi.nlm.nih.gov/pubmed/29115400
http://dx.doi.org/10.3892/ijmm.2017.3234
Descripción
Sumario:Mammalian cardiomyocytes may permanently lose their ability to proliferate after birth. Therefore, studying the proliferation and growth arrest of cardiomyocytes during the postnatal period may enhance the current understanding regarding this molecular mechanism. The present study identified the differentially expressed genes in hearts obtained from 24 h-old mice, which contain proliferative cardiomyocytes; 7-day-old mice, in which the cardiomyocytes are undergoing a proliferative burst; and 10-week-old mice, which contain growth-arrested cardiomyocytes, using global gene expression analysis. Furthermore, myocardial proliferation and growth arrest were analyzed from numerous perspectives, including Gene Ontology annotation, cluster analysis, pathway enrichment and network construction. The results of a Gene Ontology analysis indicated that, with increasing age, enriched gene function was not only associated with cell cycle, cell division and mitosis, but was also associated with metabolic processes and protein synthesis. In the pathway analysis, 'cell cycle', proliferation pathways, such as the 'PI3K-AKT signaling pathway', and 'metabolic pathways' were well represented. Notably, the cluster analysis revealed that bone morphogenetic protein (BMP)1, BMP10, cyclin E2, E2F transcription factor 1 and insulin like growth factor 1 exhibited increased expression in hearts obtained from 7-day-old mice. In addition, the signal transduction pathway associated with the cell cycle was identified. The present study primarily focused on genes with altered expression, including downregulated anaphase promoting complex subunit 1, cell division cycle (CDC20), cyclin dependent kinase 1, MYC proto-oncogene, bHLH transcription factor and CDC25C, and upregulated growth arrest and DNA damage inducible α in 10-week group, which may serve important roles in postnatal myocardial cell cycle arrest. In conclusion, these data may provide important information regarding myocardial proliferation and development.