Cargando…

Genome-wide DNA methylome alterations in acute coronary syndrome

Acute coronary syndrome (ACS) is a common disease with high mortality and morbidity rates. The methylation status of blood DNA may serve as a potential early diagnosis and prevention biomarker for numerous diseases. The present study was designed to explore novel genome-wide aberrant DNA methylation...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dandan, Yan, Jing, Yuan, Yunlong, Wang, Cheng, Wu, Jia, Chen, Qingwen, Song, Jiaxi, Wang, Junjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746328/
https://www.ncbi.nlm.nih.gov/pubmed/29115576
http://dx.doi.org/10.3892/ijmm.2017.3220
Descripción
Sumario:Acute coronary syndrome (ACS) is a common disease with high mortality and morbidity rates. The methylation status of blood DNA may serve as a potential early diagnosis and prevention biomarker for numerous diseases. The present study was designed to explore novel genome-wide aberrant DNA methylation patterns associated with ACS. The Infinium HumanMethylation450 assay was used to examine genome-wide DNA methylation profiles in 3 pairs of ACS and control group samples. Epigenome-wide DNA methylation, genomic distribution, Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The results were confirmed using methylation-specific polymerase chain reaction (MSP) and Sequenom MassARRAY analyses in ACS, stable coronary artery disease (SCAD) and control samples. A total of 11,342 differentially methylated (DM) 5′-C-phosphate-G-3′ (CpG) sites were identified, including 8,865 hypomethylated and 2,477 hypermethylated CpG sites in the ACS group compared with the control samples. They varied in frequency across genomic compartments, but were particularly notable in gene bodies and shores. The results of GO term and KEGG pathway enrichment analyses revealed that the methylated genes were associated with certain biological processes and pathways. Despite the considerable variability in methylation data, the candidate selected possessed significant methylation alteration in mothers against decapentaplegic homolog 3 (SMAD3) transcription start site 155 (Chr1:67356838-Chr1:67356942). MSP analysis from 81 ACS samples, 74 SCAD samples and 53 healthy samples, and Sequenom MassARRAY analysis, confirmed that differential CpG methylation of SMAD3 was significantly corrected with the reference results of the HumanMethylation450 array. The data identified an ACS-specific DNA methylation profile with a large number of novel DM CpG sites, some of which may serve as candidate markers for the early diagnosis of ACS.