Cargando…

Analysis of the codon usage pattern in Middle East Respiratory Syndrome Coronavirus

Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which first broken out in Jeddah in 2012, causes a severe acute respiratory illness with a high mortality rate. To better understand the molecular characteristics of isolated MERS-CoV genomes, we first analysed the codon usage pattern of the z...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ye, Xu, Quanming, Yuan, Xiaomin, Li, Xinxin, Zhu, Ting, Ma, Yanmei, Chen, Ji-Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746386/
https://www.ncbi.nlm.nih.gov/pubmed/29299151
http://dx.doi.org/10.18632/oncotarget.22738
Descripción
Sumario:Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which first broken out in Jeddah in 2012, causes a severe acute respiratory illness with a high mortality rate. To better understand the molecular characteristics of isolated MERS-CoV genomes, we first analysed the codon usage pattern of the zoonotic MERS-CoV strains comprehensively to gain an insight into the mechanism of cross-species transmission. We found that MERS human/camel isolates showed a low codon usage bias. Both mutation and nature selection pressure have contributed to this low codon usage bias, with the former being the main determining factor. We also observed that gene function, evolution time and the different host species of the virus all contributed to the bias of MERS-CoV, to some extent. Additionally, the codon usage pattern of MERS-CoV isolates is different from other related Nidovirales viruses isolated from bats and hedgehogs. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.