Cargando…
Navigating features: a topologically informed chart of electromyographic features space
The success of biological signal pattern recognition depends crucially on the selection of relevant features. Across signal and imaging modalities, a large number of features have been proposed, leading to feature redundancy and the need for optimal feature set identification. A further complication...
Autores principales: | Phinyomark, Angkoon, Khushaba, Rami N., Ibáñez-Marcelo, Esther, Patania, Alice, Scheme, Erik, Petri, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746577/ https://www.ncbi.nlm.nih.gov/pubmed/29212759 http://dx.doi.org/10.1098/rsif.2017.0734 |
Ejemplares similares
-
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors
por: Phinyomark, Angkoon, et al.
Publicado: (2018) -
Feature Extraction and Selection for Pain Recognition Using Peripheral Physiological Signals
por: Campbell, Evan, et al.
Publicado: (2019) -
Interpreting Deep Learning Features for Myoelectric Control: A Comparison With Handcrafted Features
por: Côté-Allard, Ulysse, et al.
Publicado: (2020) -
Fractal Analysis of Human Gait Variability via Stride Interval Time Series
por: Phinyomark, Angkoon, et al.
Publicado: (2020) -
Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity
por: Campbell, Evan, et al.
Publicado: (2020)