Cargando…

Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed b...

Descripción completa

Detalles Bibliográficos
Autores principales: Villegas, María F., Garcia-Uriostegui, Lorena, Rodríguez, Ofelia, Izquierdo-Barba, Isabel, Salinas, Antonio J., Toriz, Guillermo, Vallet-Regí, María, Delgado, Ezequiel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746747/
https://www.ncbi.nlm.nih.gov/pubmed/28952559
http://dx.doi.org/10.3390/bioengineering4040080
Descripción
Sumario:This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm(−1) and bands at 1625 and 1415 cm(−1) corresponding to -NH(3+)/COO(−) pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.