Cargando…

The Effects of Alkyl Chain Combinations on the Structural and Mechanical Properties of Biomimetic Ion Pair Amphiphile Bilayers

Ion pair amphiphile (IPA), a lipid-like complex composed of a pair of cationic and anionic surfactants, has great potentials in various pharmaceutical applications. In this work, we utilized molecular dynamics (MD) simulation to systematically examine the structural and mechanical properties of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Cheng-hao, Tian, Ching-an, Chiu, Chi-cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746751/
https://www.ncbi.nlm.nih.gov/pubmed/29019911
http://dx.doi.org/10.3390/bioengineering4040084
Descripción
Sumario:Ion pair amphiphile (IPA), a lipid-like complex composed of a pair of cationic and anionic surfactants, has great potentials in various pharmaceutical applications. In this work, we utilized molecular dynamics (MD) simulation to systematically examine the structural and mechanical properties of the biomimetic bilayers consist of alkyltrimethyl-ammonium-alkylsulfate (C(m)TMA(+)-C(n)S(−)) IPAs with various alkyl chain combinations. Our simulations show an intrinsic one-atom offset for the C(m)TMA(+) and C(n)S(−) alignment, leading to the asymmetric index definition of ΔC = m − (n + 1). Larger |ΔC| gives rise to higher conformational fluctuations of the alkyl chains with the reduced packing order and mechanical strength. In contrast, increasing the IPA chain length enhances the van der Waals interactions within the bilayer and thus improves the bilayer packing order and mechanical properties. Further elongating the C(m)TMA(+)-C(n)S(−) alkyl chains to m and n ≥ 12 causes the liquid disorder to gel phase transition of the bilayer at 298 K, with the threshold membrane properties of 0.45 nm(2) molecular area, deuterium order parameter value of 0.31, and effective bending rigidity of 20 k(B)T, etc. The combined results provide molecular insights into the design of biomimetic IPA bilayers with wide structural and mechanical characteristics for various applications.