Cargando…

Cationic Biomimetic Particles of Polystyrene/Cationic Bilayer/Gramicidin for Optimal Bactericidal Activity

Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus. The adsorption of DODA...

Descripción completa

Detalles Bibliográficos
Autores principales: Xavier, Gabriel R. S., Carmona-Ribeiro, Ana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746912/
https://www.ncbi.nlm.nih.gov/pubmed/29207496
http://dx.doi.org/10.3390/nano7120422
Descripción
Sumario:Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus. The adsorption of DODAB/Gr bilayer onto PSS nanoparticles (NPs) increased the zeta-average diameter by 8–10 nm, changed the zeta-potential of the NPs from negative to positive, and yielded a narrow size distributions for the PSS/DODAB/Gr NPs, which displayed broad and maximal microbicidal activity at very small concentrations of the antimicrobials, namely, 0.057 and 0.0057 mM DODAB and Gr, respectively. The results emphasized the advantages of highly-organized, nanostructured, and cationic particles to achieve hybrid combinations of antimicrobials with broad spectrum activity at considerably reduced DODAB and Gr concentrations.