Cargando…
Role of transforming growth factor-β in muscle damage and regeneration: focused on eccentric muscle contraction
High-intensity eccentric muscle contraction induces muscle damage. Damaged muscles recover through different processes, including degeneration, inflammation, regeneration, and fibrosis; some of these processes are mediated through the actions of cytokines. The transforming growth factor-beta (TGF-β)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Exercise Rehabilitation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747195/ https://www.ncbi.nlm.nih.gov/pubmed/29326892 http://dx.doi.org/10.12965/jer.1735072.536 |
Sumario: | High-intensity eccentric muscle contraction induces muscle damage. Damaged muscles recover through different processes, including degeneration, inflammation, regeneration, and fibrosis; some of these processes are mediated through the actions of cytokines. The transforming growth factor-beta (TGF-β) is one such cytokine involved in muscle recovery and repair. In this regard, TGF-β regulates the skeletal muscle inflammatory response, inhibits muscle regeneration, regulates extracellular matrix remodeling, and promotes fibrosis. Although some studies have suggested that inhibition of TGF-β after muscle damage promotes muscle regeneration and recovery, other studies have noted that TGF-β inhibition actually reduces muscle strength because it leads to incomplete muscle regeneration. Despite the importance of TGF-β in the repair of damaged muscles, most studies have focused on examining its role in muscle diseases such as chronic inflammatory diseases or Duchenne’s muscular dystrophy. Here, we have reviewed the existing literature for examining the role of TGF-β in muscle damage and regeneration after eccentric muscle contraction. |
---|