Cargando…
A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step
The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver’s seat orderly using hand rail. Sampling rate of for...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Exercise Rehabilitation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747209/ https://www.ncbi.nlm.nih.gov/pubmed/29326906 http://dx.doi.org/10.12965/jer.1735092.546 |
_version_ | 1783289245387980800 |
---|---|
author | Hyun, Seung-Hyun Ryew, Che-Cheong |
author_facet | Hyun, Seung-Hyun Ryew, Che-Cheong |
author_sort | Hyun, Seung-Hyun |
collection | PubMed |
description | The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver’s seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver’s seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver’s seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system. |
format | Online Article Text |
id | pubmed-5747209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Korean Society of Exercise Rehabilitation |
record_format | MEDLINE/PubMed |
spelling | pubmed-57472092018-01-11 A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step Hyun, Seung-Hyun Ryew, Che-Cheong J Exerc Rehabil Original Article The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver’s seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver’s seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver’s seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system. Korean Society of Exercise Rehabilitation 2017-12-27 /pmc/articles/PMC5747209/ /pubmed/29326906 http://dx.doi.org/10.12965/jer.1735092.546 Text en Copyright © 2017 Korean Society of Exercise Rehabilitation This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Hyun, Seung-Hyun Ryew, Che-Cheong A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title | A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title_full | A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title_fullStr | A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title_full_unstemmed | A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title_short | A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
title_sort | comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747209/ https://www.ncbi.nlm.nih.gov/pubmed/29326906 http://dx.doi.org/10.12965/jer.1735092.546 |
work_keys_str_mv | AT hyunseunghyun acomparisonofgroundreactionforcecomponentsaccordingtothefootholdheightsin16ttruckduringdownwardstep AT ryewchecheong acomparisonofgroundreactionforcecomponentsaccordingtothefootholdheightsin16ttruckduringdownwardstep AT hyunseunghyun comparisonofgroundreactionforcecomponentsaccordingtothefootholdheightsin16ttruckduringdownwardstep AT ryewchecheong comparisonofgroundreactionforcecomponentsaccordingtothefootholdheightsin16ttruckduringdownwardstep |